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Predictors

2



Data �tting

I we think y 2 R and x 2 Rd are (approximately) related by

y � f(x)

I x is called the independent variable or feature vector

I y is called the outcome or response or target or label or dependent variable

I often y is something we want to predict

I we don't know the `true' relationship between x and y
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Features

often x is a vector of features:

I documents

I x is word count histogram for a document

I patient data

I x are patient attributes, test results, symptoms

I customers

I x is purchase history and other attributes of a customer
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Where features come from

I we use u to denote the raw input data, such as a vector, word or text, image,

video, audio, . . .

I x = �(u) is the corresponding feature vector

I the function � is called the embedding or feature function

I � might be very simple or quite complicated

I similarly, the raw output data v can be featurized as y =  (v)

I often we take �(u)1 = x1 = 1, the constant feature

I (much more on these ideas later)
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Data and prior knowledge

I we are given data x1; : : : ; xn 2 Rd and y1; : : : ; yn 2 R

I (xi; yi) is the ith data pair or observation or example

I we also (might) have prior knowledge about what f might look like

I e.g., f is smooth or continuous: f(x) � f(~x) when x is near ~x

I or we might know y � 0
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Predictor

I we seek a predictor or model g : Rd ! R

I for feature vector x, our prediction (of y) is ŷ = g(x)

I predictor g is chosen based on both data and prior knowledge

I in terms of raw data, our predictor is

v̂ =  
�1(g(�(u)))

(with a slight variation when  is not invertible)

I ŷi � yi means our predictor does well on ith data pair

I but our real goal is to have ŷ � y for (x; y) pairs we have not seen
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Information �ow
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Prediction methods

I fraud, psychic powers, telepathy, magic sticks, incantations, crystals, hunches,

statistics, AI, machine learning, data science

I and many algorithms . . .

I example: nearest neighbor predictor

I given x, �nd its nearest neighbor xi among given data

I then predict ŷ = g(x) = yi

A learning algorithm is a recipe for producing a predictor given data
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Example: Nearest neighbor prediction
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I left plot shows nearest neighbor prediction

I right plot shows �t with cubic polynomial
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Linear predictors

11



Linear predictor

I predictors that are linear functions of x are widely used

I a linear predictor has the form

g(x) = �
T
x

for some vector � 2 Rd, called the predictor parameter vector

I also called a regression model

I xj is the jth feature, so the prediction is a linear combination of features

ŷ = g(x) = �1x1 + � � �+ �dxd

I we get to choose the predictor parameter vector � 2 Rd

I sometimes we write g�(x) to emphasize the dependence on �
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Interpreting a linear predictor

ŷ = g(x) = �1x1 + � � �+ �dxd

I �3 is the amount that prediction ŷ = g(x) increases when x3 increases by 1

I particularly interpretable when x3 is Boolean (only takes values 0 or 1)

I �7 = 0 means that the prediction does not depend on x7

I � small means predictor is insensitive to changes in x:

jg(x)� g(~x)j =
���Tx� �T~x

�� =
���T(x� ~x)

�� � k�k kx� ~xk
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A�ne predictor

I suppose the �rst feature is constant, x1 = 1

I the linear predictor g is then an a�ne function of x2:d, i.e., linear plus a

constant

g(x) = �
T
x = �1 + �2x2 + � � �+ �dxd

I �1 is called the o�set or constant term in the predictor

I �1 is the prediction when all features (except the constant) are zero
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Empirical risk minimization
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Loss function

a loss or risk function ` : R � R ! R quanti�es how well (more accurately, how

badly) ŷ approximates y

I smaller values of `(ŷ; y) indicate that ŷ is a good approximation of y

I typically `(y; y) = 0 and `(ŷ; y) � 0 for all ŷ, y

examples

I quadratic loss: `(ŷ; y) = (ŷ � y)2

I absolute loss: `(ŷ; y) = jŷ � yj
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Empirical risk

how well does the predictor g �t a data set (xi; yi), i = 1; : : : ; n, with loss `?

I the empirical risk is the average loss over the data points,

L =
1

n

nX

i=1

`(ŷi; yi) =
1

n

nX

i=1

`(g(xi); yi)

I if L is small, the predictor predicts the given data well

I when the predictor is parametrized by �, we write

L(�) = 1

n

nX

i=1

`(g�(x
i); yi)

to show the dependence on the predictor parameter �
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Mean square error

I for square loss `(ŷ; y) = (ŷ � y)2, empirical risk is mean-square error (MSE)

L = MSE =
1

n

nX

i=1

(g(xi)� yi)2

I often we use root-mean-square error, RMSE =
p
MSE, which has same

units/scale as outcomes yi

18



Mean absolute error

I for absolute value `(ŷ; y) = jŷ � yj, empirical risk is mean-absolute error

L =
1

n

nX

i=1

jg(xi)� yij

I has same units/scale as outcomes yi

I similar to, but not the same as, mean-square error
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Empirical risk minimization

I choosing the parameter � in a parametrized predictor g�(x) is called �tting

the predictor (to data)

I empirical risk minimization (ERM) is a general method for �tting a parametrized

predictor

I ERM: choose � to minimize empirical risk L(�)

I thus, ERM chooses � by attempting to match given data

I often there is no analytic solution to this minimization problem, so we use

numerical optimization to �nd � that minimizes L(�)
(more on this topic later)
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