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Predictors



Data fitting

» we think y € R and z € R? are (approximately) related by
y~ f(z)
» z is called the independent variable or feature vector
» vy is called the outcome or response or target or label or dependent variable
» often y is something we want to predict

» we don't know the ‘true’ relationship between z and y



Features

often z is a vector of features:
» documents
» <z is word count histogram for a document

» patient data

» <z are patient attributes, test results, symptoms

» customers

» <z is purchase history and other attributes of a customer



Where features come from

» we use u to denote the raw input data, such as a vector, word or text, image,
video, audio, ...

» z = ¢(u) is the corresponding feature vector

» the function ¢ is called the embedding or feature function

» ¢ might be very simple or quite complicated

» similarly, the raw output data v can be featurized as y = 9(v)
» often we take ¢(u)1 = x1 = 1, the constant feature

» (much more on these ideas later)



Data and prior knowledge

» we are given data z!,...,z" € R* and y,...,y" €R

» (z%,y%) is the ith data pair or observation or example

» we also (might) have prior knowledge about what f might look like

» e.g., fis smooth or continuous: f(z) ~ f(&) when z is near &

» or we might know y > 0



Predictor

» we seek a predictor or model g : R* — R
» for feature vector z, our prediction (of y) is § = g(z)
» predictor g is chosen based on both data and prior knowledge
» in terms of raw data, our predictor is
o= 9 (g(¢(w)))

(with a slight variation when % is not invertible)

» §° =y’ means our predictor does well on ith data pair

» but our real goal is to have § =~ y for (z,y) pairs we have not seen



Information flow

raw data feature outcome raw output
z Y
u—> () f() P v
z = ¢(u) y=19(v)
student hrs. sleep exam score grade
hrs. study

hrs. facebook
alcohol freq.



Prediction methods

» fraud, psychic powers, telepathy, magic sticks, incantations, crystals, hunches,
statistics, Al, machine learning, data science

» and many algorithms . ..

» example: nearest neighbor predictor

» given z, find its nearest neighbor z* among given data

b then predict § = g(z) = y*

A learning algorithm is a recipe for producing a predictor given data



Example: Nearest neighbor prediction

07 - 07
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T
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0.4 0.4
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» left plot shows nearest neighbor prediction

» right plot shows fit with cubic polynomial
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Linear predictors
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Linear predictor

» predictors that are linear functions of z are widely used
» a linear predictor has the form
g(z)=0"z
for some vector 8 € R?, called the predictor parameter vector
» also called a regression model
» z; is the jth feature, so the prediction is a linear combination of features

7=g9(z) =61z1 + -+ bazq

b we get to choose the predictor parameter vector 8§ € R%

» sometimes we write go(z) to emphasize the dependence on 6
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Interpreting a linear predictor

g=g9(z) =601z1+ -+ baza

» 03 is the amount that prediction § = g(z) increases when z3 increases by 1

» particularly interpretable when z3 is Boolean (only takes values 0 or 1)
» 07 = 0 means that the prediction does not depend on 7
» 6 small means predictor is insensitive to changes in z:

l9(z) — 9(8)| = |67z — 07 &

=67 - &)| <ol ll= - &)
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Affine predictor

» suppose the first feature is constant, z; = 1

» the linear predictor g is then an affine function of z2.4, i.e., linear plus a
constant
9(z) = 0"z = 6; + 6222+ - - + Bazq

» 61 is called the offset or constant term in the predictor

» 061 is the prediction when all features (except the constant) are zero
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Empirical risk minimization
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Loss function

a loss or risk function £ : R x R — R quantifies how well (more accurately, how
badly) § approximates y

» smaller values of £(§, y) indicate that § is a good approximation of y

» typically £(y,y) =0 and £(g,y) > 0 for all g, y

examples

» quadratic loss: £(3,y) = (§ — y)?

» absolute loss: £(§,y) = |§ — y|
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Empirical risk

how well does the predictor g fit a data set (z*,4%), i =1,...,n, with loss £?

» the empirical risk is the average loss over the data points,
£=23"ugv) = =3 Ueleh)v)
n i ’ n i ’
1= 1=

» if £ is small, the predictor predicts the given data well

» when the predictor is parametrized by 8, we write
1 ki . .
L 9 — 1 7
0= ;z(ge(z )v')

to show the dependence on the predictor parameter 6
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Mean square error

» for square loss £(4,y) = (§ — y)?, empirical risk is mean-square error (MSE)

n

L=MSE= 3 (s(a') ~ v')’

=1

» often we use root-mean-square error, RMSE = +/MSE, which has same
units/scale as outcomes y*
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Mean absolute error

» for absolute value (9, y) = |§ — y|, empirical risk is mean-absolute error
£= 15 06— v
"=
1=

» has same units/scale as outcomes y*

» similar to, but not the same as, mean-square error
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Empirical risk minimization

» choosing the parameter 6 in a parametrized predictor ge(z) is called fitting
the predictor (to data)

» empirical risk minimization (ERM) is a general method for fitting a parametrized
predictor

» ERM: choose 6 to minimize empirical risk L(8)
» thus, ERM chooses 6 by attempting to match given data

» often there is no analytic solution to this minimization problem, so we use
numerical optimization to find 6 that minimizes £(8)
(more on this topic later)
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