Jong-Han Kim

Features

Jong-Han Kim

EE787 Fundamentals of machine learning Kyung Hee University

Records and embedding

Raw data

- ▶ raw data pairs are (u, v), with $u \in U$, $v \in V$
- $\blacktriangleright~{\cal U}$ is set of all possible input values
- $\blacktriangleright~\mathcal{V}$ is set of all possible output values
- ▶ each *u* is called a *record*
- ▶ typically a record is a tuple, or list, $u = (u_1, u_2, ..., u_r)$
- each u_i is a *field* or *component*, which has a *type*, *e.g.*, real number, Boolean, categorical, ordinal, word, text, audio, image, parse tree (more on this later)
- e.g., a record for a house for sale might consist of

(address, photo, description, house/apartment?, lot size, ..., # bedrooms)

Feature map

 \blacktriangleright learning algorithms are applied to (x,y) pairs,

$$x=\phi(u), \qquad y=\psi(v)$$

 $igstarrow \phi: \mathcal{U}
ightarrow {f R}^d$ is the *feature map* for u

- ▶ $\psi : \mathcal{V} \to \mathbf{R}$ is the *feature map* for *v*
- feature maps transform records into vectors
- feature maps usually work on each field separately,

$$\phi(u_1,\ldots,u_r)=(\phi_1(u_1),\ldots,\phi_r(u_r))$$

• ϕ_i is an *embedding* of the type of field *i* into a vector

Embeddings

- embedding puts the different field types on an equal footing, *i.e.*, vectors
- some embeddings are simple, e.g.,
 - ▶ for a number field ($\mathcal{U} = \mathbf{R}$), $\phi_i(u_i) = u_i$

$$lacksim$$
 for a Boolean field, $\phi_i(u_i)= \left\{egin{array}{cc} 1 & u_i= ext{TRUE} \ -1 & u_i= ext{FALSE} \end{array}
ight.$

- others are more sophisticated
 - ▶ text to TFID histogram
 - word2vec (maps words into vectors)
 - pre-trained ImageNet NN (maps images into vectors)

(more on these later)

More embeddings

- ▶ color to (R, G, B)
- \blacktriangleright geolocation data: $\phi(u) =$ (Lat,Long) in ${\sf R}^2$ or embed in ${\sf R}^3$
- ▶ day of week:

Faithful embeddings

a *faithful* embedding satisfies

- $ightarrow \phi(u)$ is near $\phi(ilde{u})$ when u and $ilde{u}$ are 'similar'
- $\blacktriangleright \phi(u)$ is not near $\phi(ilde{u})$ when u and $ilde{u}$ are 'dissimilar'

- lefthand concept is vector distance
- righthand concept depends on field type, application

- interesting examples: names, professions, companies, countries, languages, ZIP codes, cities, songs, movies
- ▶ we will see later how such embeddings can be constructed

	Example: word2vec	lonely vengeful sympath	у	lust adoration	tenderness	
1.0	helpless hopele: angu alienated	SS	ion ^{sorrow}			
0.5		ornful bitter	comp	caring assionate lated		tender
0.5	aisoriented numb jealous insultedindifferer depre angry	ssed gu disliked	ilty love b calm	orave defea	trust ited	tertiter
0.0	disillusioned exasperated ambivalent regretful regretful regretful	exhausted suspicious	aroused		safe a	attraction content
0.0	irritated confused panicked embarrassed disgusted annoved scared disturbed prustrated overwipelmed		uncertain	rejected	entosorbed	Contorn
-0.5	outraged dreading horrifiedamused exhilarated hesita	ourious	axed ortable			
	alarmed stunned receptive	utious e eager atisfied				
-1.0	dismayed	ppy ir	nterested	anticipating		
-1.0	disappointed amazed optim	enthusiastic hope proud	əful	anticipating		
	-2.25 -2.00 -1.75	1.50 -1.25	i –1.	.00 —0	.75	-0.50 8 0.25

Standardized embeddings

usually assume that an embedding is *standardized*

- entries of $\phi(u)$ are centered around 0
- entries of $\phi(u)$ have RMS value around 1
- \blacktriangleright roughly speaking, entries of $\phi(u)$ ranges over ± 1

▶ with standarized embeddings, entries of feature map

$$\phi(u_1,\ldots,u_r)=(\phi_1(u_1),\ldots,\phi_r(u_r))$$

are all comparable, *i.e.*, centered around zero, standard deviation around one $ightarrow rms(\phi(u) - \phi(\tilde{u}))$ is reasonable measure of how close records u and \tilde{u} are

Standardization or *z*-scoring

• suppose $\mathcal{U} = \mathbf{R}$ (field type is real numbers)

$$\blacktriangleright$$
 for data set $u^1,\ldots,u^n\in\mathsf{R}$

$$ar{u}=rac{1}{n}\sum_{i=1}^n u^i \qquad ext{std}(u)=\left(rac{1}{n}\sum_{i=1}^n (u^i-ar{u})^2
ight)^rac{1}{2}$$

▶ the *z*-score or standardization of *u* is the embedding

$$x = \operatorname{zscore}(u) = rac{1}{\operatorname{std}(u)}(u - ar{u})$$

- ensures that embedding values are centered at zero, with standard deviation one
- ▶ *z*-scored features are very easy to interpret: $x = \phi(u) = +1.3$ means that *u* is 1.3 standard deviations above the mean value

Standardized data matrix

- ▶ suppose all *d* (real) features have been standardized
- \blacktriangleright columns of $n \times d$ feature matrix X have zero mean, RMS value one
- $(1/n)X^T X = \Sigma$ is the feature correlation matrix
- $\Sigma_{ii} = 1$ (since each column of X has RMS value 1, and so norm \sqrt{n})
- Σ_{ij} is correlation coefficient of ith and jth raw features

Log transform

- ▶ old school rule-of-thumb: if field u is positive and ranges over wide scale, embed as $\phi(u) = \log u$ (or $\log(1 + u)$) (and then standarize)
- examples: web site visits, ad views, company capitalization
- interpretation as faithful embedding:
 - 20 and 22 are similar, as are 1000 and 1100
 - but 20 and 120 are not similar
 - i.e., you care about fractional or relative differences between raw values

(here, log embedding is faithful, affine embedding is not)

▶ can also apply to output or label field, *i.e.*, $y = \psi(v) = \log v$ if you care about percentage or fractional errors; recover $\hat{v} = \exp(\hat{y})$

Example: House price prediction

- \blacktriangleright we want to predict house selling price v from record $u = (u_1, u_2)$
 - \blacktriangleright $u_1 = area (sq. ft.)$
 - ▶ u₂ = # bedrooms
- ▶ we care about relative error in price, so we embed v as ψ(v) = log v (and then standardize)
- \blacktriangleright we standardize fields u_1 and u_2

$$x_1 = rac{u_1 - \mu_1}{\sigma_1}, \qquad x_2 = rac{u_2 - \mu_2}{\sigma_2}$$

- $ightarrow \mu_1 = ar{u}_1$ is mean area
- ▶ $\mu_2 = \bar{u}_2$ is mean number of bedrooms
- \blacktriangleright $\sigma_1 = \mathsf{std}(u_1)$ is std. dev. of area
- $\sigma_2 = \operatorname{std}(u_2)$ is std. dec. of # bedrooms

(means and std. dev. are over our data set)

Example: House price regression model

- ▶ regression model: $\hat{y} = \theta_1 + \theta_2 x_1 + \theta_3 x_2$
- ▶ in terms of original raw data:

$$\hat{v} = \exp\left(heta_1 + heta_2rac{u_1-\mu_1}{\sigma_1} + heta_3rac{u_2-\mu_2}{\sigma_2}
ight)$$

exp undoes log embedding of house price

Vector embeddings

Vector embeddings for real field

- \blacktriangleright we can embed a field u into a vector $x=\phi(u)\in \mathsf{R}^k$
- useful even when $\mathcal{U} = \mathbf{R}$ (real field)
- polynomial embedding:

$$\phi(u)=(1,u,u^2,\ldots,u^d)$$

▶ piecewise linear embedding:

$$\phi(u) = (1,(u)_-,(u)_+)$$

where $(u)_{-} = \min(u, 0), (u)_{+} = \max(u, 0)$

> regression with these features yield polynomial and piecewise linear predictors

Whitening

- ▶ analog of standardization for raw data $\mathcal{U} = \mathbf{R}^d$
- \blacktriangleright start with raw data, n imes d matrix U
- $\bar{u} = U^T \mathbf{1}/n$ is vector of column means
- $ilde{U} = U \mathbf{1} ar{u}^T$ is de-meaned data matrix
- $ilde{U} = QR$ is its QR factorization

$$igstarrow X = \sqrt{n}Q = \sqrt{n} ilde{U}R^{-1}$$
 defines embedding $x^i = \phi(u^i)$

- columns of X have zero mean and RMS value one
- columns of X are orthogonal
- features are uncorrelated
- feature correlation matrix is $\Sigma = I$

Whitening example

Categorical data

- data field is categorical if it only takes a finite number of values
- *i.e.*, \mathcal{U} is a finite set $\{\alpha_1, \ldots, \alpha_k\}$
- examples:
 - TRUE/FALSE (two values, also called Boolean)
 - APPLE, ORANGE, BANANA (three values)
 - MONDAY, ..., SUNDAY (seven values)
 - ZIP code (40000 values)
- one-hot embedding for categoricals: $\phi(\alpha_i) = e_i \in \mathsf{R}^k$

 $\phi(\text{apple}) = (1, 0, 0), \quad \phi(\text{orange}) = (0, 1, 0), \quad \phi(\text{banana}) = (0, 0, 1)$

standardizing these features handles unbalanced data

Ordinal data

- ordinal data is categorical, with an order
- example: Likert scale, with values

STRONGLY DISAGREE, DISAGREE, NEUTRAL, AGREE, STRONGLY AGREE

- \blacktriangleright can embed into **R** with values -2, -1, 0, 1, 2
- ▶ or treat as categorical, with one-hot embedding into **R**⁵
- example: number of bedrooms in house
 - can be treated as a real number
 - or as an ordinal with (say) values 1,...,6

Feature engineering

How feature maps are constructed

start by embedding each field

$$\phi(u_1,\ldots,u_r)=(\phi_1(u_1),\ldots,\phi_r(u_r))$$

- ▶ can then standardize, if needed
- ▶ use *feature engineering* to create new features from existing ones

Creating new features

- ▶ product features: $x_{new} = x_i x_j$ (models *interactions* between features)
- ▶ max features: $x_{new} = \max(x_i, x_j)$ (can also use min)
- positive/negative parts:

$$x_{\texttt{new}+} = (x_i)_+ = \max(x_i, 0), \qquad x_{\texttt{new}-} = (x_i)_- = \min(x_i, 0)$$

- random features:
 - choose random matrix R
 - new features are $(Rx)_+$ or $(Rx)_-$

Un-embedding

Un-embedding

- \blacktriangleright we embed v as $y=\psi(v),~\psi:\mathcal{V}
 ightarrow\mathsf{R}$
- \blacktriangleright we need to 'invert' this operation, and go from \hat{y} to \hat{v}
- \blacktriangleright when the inverse function exists, we use $\psi^{-1}: \mathbf{R}
 ightarrow \mathcal{V}$
- example: log embedding $y = \log v$ has inverse $v = \exp y$
- prediction stack:
 - 1. *embed*: given record u, feature vector is $x = \phi(u)$
 - 2. predict: $\hat{y} = g(x)$
 - 3. *un-embed*: $\hat{v} = \psi^{-1}(\hat{y})$
- ▶ final predictor is $\hat{v} = \psi^{-1}(g(\phi(u)))$

Un-embedding

- \blacktriangleright in many cases, the inverse of ψ function doesn't exist
- ▶ for example, embedding a Boolean or ordinal into **R**
- ▶ for the purposes of un-embedding, we define

$$\psi^{-1}(y) = \operatorname*{argmin}_{v \in \mathcal{V}} ||y - \psi(v)||$$

i.e., we choose the value of v for which $\psi(v)$ is closest to y

 \blacktriangleright example: embed TRUE \mapsto 1 and FALSE \mapsto -1

▶ un-embed via

$$\psi^{-1}(y) = egin{cases} ext{TRUE} & ext{if } y > 0 \ ext{FALSE} & ext{otherwise} \end{cases}$$

Example: Un-embedding one-hot

• one-hot embedding: $\phi(u) = e_u$ for $\mathcal{U} = \{1, \dots, d\}$

▶ un-embed

$$\phi^{-1}(x) = \operatorname*{argmin}_{u} ||x - e_u||_2 = \operatorname*{argmax}_{u} x_u$$