Jong-Han Kim

# Regularization

Jong-Han Kim

# EE787 Fundamentals of machine learning Kyung Hee University

#### Sensitivity

- we have a linear predictor  $\hat{y} = g(x) = \theta^{\mathsf{T}} x$
- if  $|\theta_i|$  is large, then the prediction is very sensitive to  $x_i$  (*i.e.*, small changes in  $x_i$  lead to large changes in the prediction)
- large sensitivity can lead to overfit, poor generalization (which would turn up in validation)
- ▶ for  $x_1 = 1$  (the constant feature), there is no sensitivity, since the feature does not change
- ▶ suggests that we would like  $\theta$  (or  $\theta_{2:d}$  if  $x_1 = 1$ ) not too large

#### Regularizer

- $\blacktriangleright$  we will measure the size of heta using a *regularizer* function  $r: \mathbb{R}^d \to \mathbb{R}$
- $r(\theta)$  is a measure of the size of  $\theta$  (or  $\theta_{2:d}$ )

▶ quadratic regularizer (a.k.a. ℓ<sub>2</sub> or sum-of-squares):

$$r( heta) = \left\| heta
ight\|^2 = heta_1^2 + \dots + heta_d^2$$

▶ absolute value regularizer (a.k.a.  $\ell_1$ ):

$$r( heta) = || heta||_1 = | heta_1| + \dots + | heta_d|$$

#### **Regularized empirical risk minimization**

> predictor should fit the given data well, *i.e.*, we want empirical risk

$$\mathcal{L}( heta) = rac{1}{n}\sum_{i=1}^n \ell( heta^{ op}x^i,y^i)$$

to be small

- **>** predictor should not be too sensitive, *i.e.*, we want  $r(\theta)$  small
- ▶ to trade off these two objectives, form *regularized empirical risk*

 $\mathcal{L}(\theta) + \lambda r(\theta)$ 

where  $\lambda \ge 0$  is the *regularization parameter* (or *hyper-parameter*)

- regularized empirical risk minimization (RERM): choose θ to minimize regularized empirical risk
- an optimization problem

## Regularized empirical risk minimization

- ▶ for  $\lambda = 0$ , RERM reduces to ERM
- ▶ RERM produces a *family* of predictors, one for each value of  $\lambda$
- in practice, we choose a few tens of values of λ, usually logarithmically spaced over a wide range
- ▶ use validation to choose among the candidate predictors
- we choose the largest value of  $\lambda$  that gives near minimum test error (*i.e.*, least sensitive predictor that generalizes well)

#### **Ridge regression**

- ▶ *ridge regression*: square loss and regularizer  $r(\theta) = ||\theta||^2$  (or  $||\theta_{2:d}||^2$  if  $x_1 = 1$ )
- also called Tykhonov regularized least squares
- regularized empirical risk is

$$\begin{split} \mathcal{L}(\theta) + \lambda r(\theta) &= \|X\theta - y\|^2 + \lambda \|\theta\|^2 \\ &= \left\| \begin{bmatrix} X \\ \sqrt{\lambda}I \end{bmatrix} \theta - \begin{bmatrix} y \\ 0 \end{bmatrix} \right\|^2 \end{aligned}$$

 $\blacktriangleright$  so optimal  $\theta$  is

$$\theta^{\star} = \left[ \begin{array}{c} X \\ \sqrt{\lambda}I \end{array} \right]^{\dagger} \left[ \begin{array}{c} y \\ 0 \end{array} \right] = (X^{T}X + \lambda I)^{-1}X^{T}y$$

• (how do you modify this to handle  $r(\theta) = ||\theta_{2:d}||^2$ ?)

## **Example: House prices**

- ▶ sale prices of 2930 homes in Ames, Iowa from 2006 to 2010
- ▶ 80 features
- ▶ we use 16 features

## **Example: Regression**



 we manually remove 4 outliers with area > 4000 (we'll see later how to detect outliers)

#### **Example: Regression**



- ▶ split data randomly into 1164 training, 291 test
- ▶ target is log(price)
- standardize all features (and log(price))
- ▶ training error 0.1060, test error 0.1361
- plot shows all test points

## Example: Ridge regression



- ▶ leftmost error is training error with no regularization: 0.1060
- rightmost error is variance of training data: 0.9787
- ▶ plot of  $\theta_i$  versus  $\lambda$  (on right) is called *regularization path*
- ▶ rightmost  $\theta$  has  $\theta_0 = -0.0043$ , the mean of training y values

# Example: Ridge regression



▶ regularization  $\lambda = 187$  is optimal; improves test performance a bit

 $\triangleright$   $\theta$  is shrunk by regularization, so predictor is less sensitive

## Example: Ridge regression



- ▶ least squares test error is 0.1361, with  $||\theta|| \approx 0.55$
- ▶ ridge regression test error (with  $\lambda = 178$ ) is 0.1295 with  $||\theta|| \approx 0.46$
- ridge regression predictor is less sensitive

## **Example:** Piecewise linear fit



▶ features 
$$x = (1, u, (u - 0.2)_+, (u - 0.4)_+, (u - 0.6)_+, (u - 0.8)_+)$$

► 
$$\lambda = 1$$
 gives  $\theta = (0.36, 0.25, -0.057, -0.056, 0.089, 0.26)$ 

• 
$$\lambda = 10^{-5}$$
 gives  $\theta = (0.05, 2.9, -3.9, 1.6, -2, 4.8)$ 

#### Fitting predictors with more parameters than data points



- ▶ this makes no sense in general
- but with regularization, you can do this

► 
$$\lambda = 1$$
 gives  $\theta = (0.55, 0.039, 0.033, 0.022, 0.011, -0.0007)$ 

• 
$$\lambda = 10^{-5}$$
 gives  $\theta = (0.46, 0.42, 0.22, -0.18, -0.58, -0.98)$ 

#### Fitting predictors with more parameters than data points



minimum point balances fitting training data versus sensitivity