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Sensitivity

» we have a linear predictor § = g(z) = 0"z

» if |6;] is large, then the prediction is very sensitive to z;
(i.e., small changes in z; lead to large changes in the prediction)

» large sensitivity can lead to overfit, poor generalization
(which would turn up in validation)

» for 1 = 1 (the constant feature), there is no sensitivity, since the feature
does not change

» suggests that we would like 6 (or 62.4 if 1 = 1) not too large



Regularizer

> we will measure the size of 8 using a regularizer function r : R* — R

» 7(0) is a measure of the size of 8 (or 82.4)

» quadratic regularizer (a.k.a. £2 or sum-of-squares):
r(6) = |l6]]* =67 +--- + 62
» absolute value regularizer (a.k.a. £1):

7(6) = [16llx = |61] + - -- + |64l



Regularized empirical risk minimization

» predictor should fit the given data well, i.e., we want empirical risk
1 n
re) = X 0Tzt o
0= ;e( 2',y")

to be small

» predictor should not be too sensitive, i.e., we want 7(8) small

» to trade off these two objectives, form regularized empirical risk
L(8) + xr(6)
where A > 0 is the regularization parameter (or hyper-parameter)

» regularized empirical risk minimization (RERM): choose 6 to minimize regu-
larized empirical risk

» an optimization problem



Regularized empirical risk minimization

» for A =0, RERM reduces to ERM
» RERM produces a family of predictors, one for each value of A

» in practice, we choose a few tens of values of A, usually logarithmically spaced
over a wide range

» use validation to choose among the candidate predictors

» we choose the largest value of A that gives near minimum test error
(i.e., least sensitive predictor that generalizes well)



Ridge regression

b ridge regression: square loss and regularizer r(8) = ||0||* (or ||62.4||* if z1 = 1)
» also called Tykhonov regularized least squares
» regularized empirical risk is

16 —ylI* + Allell”
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L(6) + Ar(6)
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» so optimal 6 is

X t
" = { Al } { g ] =(XTX + M) X"y

» (how do you modify this to handle 7(8) = ||62.4]|*?)



Example: House prices

» sale prices of 2930 homes in Ames, lowa from 2006 to 2010
» 80 features

» we use 16 features



Example: Regression
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» we manually remove 4 outliers with area > 4000
(we'll see later how to detect outliers)



Example: Regression

predicted y

» split data randomly into 1164 training, 291 test
» target is log(price)

» standardize all features (and log(price))

» training error 0.1060, test error 0.1361

» plot shows all test points



Example: Ridge regression

training loss
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leftmost error is training error with no regularization: 0.1060

rightmost error is variance of training data: 0.9787
plot of 8; versus A (on right) is called regularization path

rightmost 6 has 8o = —0.0043, the mean of training y values
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Example: Ridge regression
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» regularization A = 187 is optimal; improves test performance a bit

» 0 is shrunk by regularization, so predictor is less sensitive
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Example: Ridge regression

predicted y

» least squares test error is 0.1361, with ||8]| = 0.55

» ridge regression test error (with A = 178) is 0.1295 with [|8]| ~ 0.46

» ridge regression predictor is less sensitive
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Example: Piecewise linear fit
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» features z = (1, u, (v —0.2)4, (v —0.4)4, (v —0.6)4,(u—0.8)4)
» X =1 gives § = (0.36,0.25, —0.057, —0.056, 0.089, 0.26)

» A =105 gives 6 = (0.05,2.9, —3.9, 1.6, —2, 4.8)



Fitting predictors with more parameters than data points
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» this makes no sense in general
» but with regularization, you can do this
» ) =1 gives § = (0.55,0.039,0.033,0.022,0.011, —0.0007)

» A =105 gives 6 = (0.46,0.42,0.22, —0.18, —0.58, —0.98)



Fitting predictors with more parameters than data points
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» minimum point balances fitting training data versus sensitivity

15



