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Penalty functions and error histograms
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Loss and penalty functions

I empirical risk (or average loss) is L(�) = 1

n

P
n

i=1
`(�Txi; yi)

I the loss function `(ŷ; y) penalizes deviation between the predicted value ŷ

and the observed value y

I common form for loss function: `(ŷ; y) = p(ŷ � y)

I p is the penalty function

I e.g., the square penalty psqr(r) = r2

I r = ŷ � y is the prediction error or residual
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Penalty functions

I the penalty function tells us how much we object to di�erent values of pre-

diction error

I usually p(0) = 0 and p(r) � 0 for all r

I if p is symmetric, i.e., p(�r) = p(r), we care only about the magnitude

(absolute value) of prediction error

I if p is asymmetric, i.e., p(�r) 6= p(r), it bothers us more to over- or under-

estimate
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Square versus absolute value penalty
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I for square penalty psqr(r) = r2

I for small prediction errors, penalty is very small (small squared)

I for large prediction errors, penalty is very large (large squared)

I for absolute penalty pabs(r) = jrj

I for small prediction errors, penalty is large (compared to square)

I for large prediction errors, penalty is small (compared to square)
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Predictors and choice of penalty function

I choice of penalty function depends on how you feel about large, small, posi-

tive, or negative prediction errors

I di�erent choices of penalty function yield di�erent predictor parameters

I choice of penalty function shapes the histogram of prediction errors, i.e.,

r1; : : : ; rn

(usually divided into bins and displayed as bar graph distribution)

6



Histogram of residuals

3 2 1 0 1 2 3
0

10

20

30

40

0

2

4

6

8

square

3 2 1 0 1 2 3
0

10

20

30

40

0

2

4

6

8

3 2 1 0 1 2 3
0

10

20

30

40

0

1

2

3

tilted

train

3 2 1 0 1 2 3
0

10

20

30

40

0

1

2

3

test

I arti�cial data with n = 300 and d = 30, using 50/50 test/train split

I plots show histogram of residuals r1; : : : ; rn

I tilted loss results in distribution with most residuals ri < 0, i.e., predictor

prefers ŷi < yi
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Robust �tting
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Outliers

I in some applications, a few data points are `way o�', or just `wrong'

I occurs due to transcription errors, error in decimal point position, etc.

I these points are called outliers

I even a few outliers in a data set can result in a poor predictor

I several standard methods are used to remove outliers, or reduce their impact

I one simple method:

I create predictor from data set

I �ag data points with large prediction errors as outliers

I remove them from the data set and repeat
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Robust penalty functions

I we say a penalty function is robust if it has low sensitivity to outliers

I robust penalty functions grow more slowly for large prediction error values

than the square penalty

I and so `allow' the predictor to have a few large prediction errors (presumably

for the outliers)

I so they handle outliers more gracefully

I a robust predictor might �t, e.g., 98% of the data very well
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Huber loss

3 2 1 0 1 2 3
0

1

2

3

4

Huber
quadratic
affine

I the Huber penalty function is

phub(r) =

(
r2 if jyj � �

�(2jrj � �) if jrj > �

I � is a parameter

I quadratic for small r, a�ne for large r
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Huber loss

I linear growth for large r makes �t less sensitive to outliers

I ERM with Huber loss is called a robust prediction method
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Log Huber
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I quadratic for small y, logarithmic for large y

pdh(y) =

(
y2 if jyj � �

�2(1� 2 log(�) + log(y2)) if jyj > �

I diminishing incremental penalty at large y
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Log Huber
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I even less sensitive to outliers than Huber
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Error distribution
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Quantile regression
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Absolute penalty

I absolute penalty pabs(r) = jrj

I the best constant predictor (d = 1, x1 = 1) minimizes 1

n

P
n

i=1
j�1 � yij

I solution is ŷ = �1 = medianfy1; : : : ; yng

I (cf. best constant predictor with square loss, which is the average)

I rough idea:

d

d�1

nX
i=1

j�1 � yij =
�
number of yis < �1

�
�
�
number of yis > �1

�

I in general case, with no regularization on constant feature, median of errors

is zero
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Tilted absolute penalty

I tilted absolute penalty: for 0 < � < 1,

ptlt(z) = � (z)+ + (1� � )(z)
�

= (1=2)jzj+ (� � 1=2)z

I � = 0:5: equal penalty for over- and under-estimating

I � = 0:1: 9� more penalty for under-estimating

I � = 0:9: 9� more penalty for over-estimating
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Tilted absolute penalty
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I best constant predictor for � minimizes 1

n

P
n

i=1
ptlt(�1 � yi)

I fraction � of training data satis�es �1 < yi

I � -quantile of training residuals is zero

I solution is ŷ = �1 = the (1� � )-quantile of fy1; : : : ; yng

I plots show histogram of residuals for training data
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Quantile regression

I quantile regression uses penalty ptlt

I in general case, with no regularization on constant feature, � -quantile of

optimal errors is zero

I hence the name quantile regression
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Example: Quantile regression
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I �t training data with loss l(ŷ; y) = ptlt(ŷ � y)

I consider � values 0:1, 0:5, 0:9
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Example: Quantile regression
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I three quite di�erent predictors

22



Example: Quantile regression
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I � -quantile of training residuals is zero
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