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Regularizers



Regularizers

» motivation:

» large 6; makes prediction 87z sensitive to value of z;

» so we want 8 (or 85.q if z1 = 1) small
» regularizer 7 : R* — R measures the size of 6
» usually regularizer is separable,
r(8) = q(6:) + - +a(0a)

where ¢ : R — R is a penalty function for the predictor coefficients



Sum squares regularizer

» sum squares regularizer uses square penalty ¢°¥"(a) = a®

r(6) = |l6]> =6} +---+63

» also called quadratic, Tychonov, or £2 regularizer



Sensitivity interpretation

» suppose the feature vector z changesto & =z + 6

» 0 is the perturbation or change in z

» the change in prediction is |87% — 87z| = |87 4|

» how big can this be, if § is small, i.e., [|6]] < €7

» by Cauchy-Schwarz inequality, |876| < ||8]|||8]| < €]|8]]

» and the choice § = ﬁe achieves this maximum change in prediction

» so ||| is a measure of the worst-case change in prediction when z is perturbed
by 8, with ||6]] <1



£, regularizer

» sum absolute or £; regularizer uses absolute value penalty ¢***(a) = |a]

r(6) = l6lls = |61] + - - + |64

» ||6]|1 is £1 norm of @

» like the Euclidean or £; norm ||6]], it is a norm, i.e., a measure of the size of
the vector 6

» Euclidean norm is often written as ||6]|2 to distinguish it from the £; norm
» they are both members of the p-norm family, defined as
1611, = (16217 + -+ +[6a]")"?

forp>1



Sensitivity interpretation

» suppose the feature vector z changesto & =z + 96

» now we assume |§;| < e, i.e., each feature can change by te

» how big can the change in prediction |87 — 8"xz| = |06 be?

» the choice §; = esign(8;) maximizes the change in prediction, ie.,

» 5, =€iff; >0
» 5, =—€iff; <0

» with this choice the change in prediction is

€|6" sign(8)| = €(|61] + - - + |6a]) = €[|6]]1

» so ||8]]1 is a measure of the worst-case change in prediction when z is per-
turbed entrywise by 1



Lasso regression

» use square loss £(7,y) = (§ — y)?

» choosing 8 to minimize £(8) + A||9]|3 is called ridge regression

» choosing 8 to minimize L£(8) + A||8||1 is called lasso regression

» invented by (Stanford's) Rob Tibshirani, 1994

» widely used in advanced machine learning

» unlike ridge regression, there is no formula for the lasso parameter vector
» but we can efficiently compute it anyway (since it's convex)

» the lasso regression model has some interesting properties



Sparsifying regularizers



Sparse coefficient vector

» suppose @ is sparse, i.e., many of its entries are zero
» prediction 87z does not depend on features z; for which 8; = 0
» this means we select some features to use (i.e., those with 6; # 0)

» (possible) practical benefits of sparse 6:

» can improve performance when many features are actually irrelevant

» makes predictor simpler to interpret
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Sparse coefficient vectors via ¢; regularization

using £1 regularization leads to sparse coefficient vectors
r(0) = ||6||1 is called a sparsifying regularizer

rough explanation:

» for square penalty, once 8; is small, 82 is very small

» so incentive for sum squares regularizer to make a coefficient smaller decreases
once it is small

» for absolute penalty, incentive to make 8; smaller keeps up all the way until
it's zero
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Example

10— fest 1.0
~— train
08 / 08
06 06
? @
3 2
2 2
0.4 0.4
02 0.2
00 e 00 —m
2 - 0 1 2 3 4 -5 -4 3 -2 -
log10(lambda) log10(lambda)
05 05
04 04
03 03
g 02 g 02
b g
= o1 = 041
0.0 0.0
-0.1 -0.1
-0.2 -02
2 - 0 1 2 3 4 -5 -4 -3 2 -
log10(lambda) log10(lambda)

» artificially generated 50 data points, 200 features
» only a few features are relevant

» left hand plots use Tychonov, right hand use lasso
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» sorted |6;| at optimal A

Tychonov

75 100 125 150 175 200
lasso

75 100 125 150 175 200

» lasso solution has only 35 non-zero components
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Example
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» choose A based on regularization path with test data

» keep features corresponding to largest components of 8 and retrain

» plots above use most important 7 features identified by lasso
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Even stronger sparsifiers

> g(a) = |af'/?
» called £o.5 regularizer
» but you shouldn’t use this term since
(|€1|o.5 bt |6d|°'5)2
is not a norm (see VMLS)
» ‘stronger’ sparsifier than £;

» but not convex so computing 8 is heuristic
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Example
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» {2, ¢1, and square root regularization
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Nonnegative regularizer
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Nonegative coefficients

» in some cases we know or require that 6; > 0
» this means that when z; increases, so must our prediction

» we can think of this constraint as regularization with penalty function

0 a>0

a) =
q(a) o a<0

» example: y is lifespan, z; measures healthy behavior ¢
» with quadratic loss, called nonnegative least squares (NNLS)

» common heuristic for nonnegative least squares: use (6%) (works poorly)
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» feature vector ¢ = (1,4, (v — 0.2)4,...,(u —0.8)4)
» nonnegative 6; means predictor function is convex (curves up)

» NNLS loss 0.59, LS loss 0.30, heuristic loss 15.05
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How to choose a regularizer

use out-of-sample or cross-validation to choose among regularizers

» for each candidate regularizer, choose A to minimize test error
(and maybe a little larger ...)

» use the regularizer that gives the best test error

» then make up a story about why you knew that would be the best
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