Jong-Han Kim

Non-Quadratic Regularizers

Jong-Han Kim

EE787 Fundamentals of machine learning Kyung Hee University

Regularizers

Regularizers

- ▶ motivation:
 - ▶ large θ_i makes prediction $\theta^{\top} x$ sensitive to value of x_i
 - \blacktriangleright so we want θ (or $\theta_{2:d}$ if $x_1 = 1$) small
- ▶ regularizer $r : \mathbf{R}^d \to \mathbf{R}$ measures the size of θ
- usually regularizer is separable,

$$r(heta) = q(heta_1) + \cdots + q(heta_d)$$

where $q: \mathbf{R} \rightarrow \mathbf{R}$ is a penalty function for the predictor coefficients

Sum squares regularizer

▶ sum squares regularizer uses square penalty
$$q^{
m sqr}(a) = a^2$$

 $r(heta) = || heta||^2 = heta_1^2 + \dots + heta_d^2$

▶ also called *quadratic*, *Tychonov*, or ℓ_2 regularizer

Sensitivity interpretation

- \blacktriangleright suppose the feature vector x changes to $ilde{x} = x + \delta$
- $\triangleright \delta$ is the *perturbation* or change in x
- ▶ the change in prediction is $|\theta^{\mathsf{T}} \tilde{x} \theta^{\mathsf{T}} x| = |\theta^{\mathsf{T}} \delta|$
- ▶ how big can this be, if δ is small, *i.e.*, $||\delta|| \leq \epsilon$?
- ▶ by Cauchy-Schwarz inequality, $|\theta^{\mathsf{T}}\delta| \leq ||\theta|| ||\delta|| \leq \epsilon ||\theta||$
- ▶ and the choice $\delta = \frac{\epsilon}{\|\theta\|} \theta$ achieves this maximum change in prediction
- ▶ so $||\theta||$ is a measure of the worst-case change in prediction when x is perturbed by δ , with $||\delta|| \leq 1$

ℓ_1 regularizer

▶ sum absolute or ℓ_1 regularizer uses absolute value penalty $q^{\mathsf{abs}}(a) = |a|$

$$r(heta) = || heta||_1 = | heta_1| + \cdots + | heta_d|$$

- $||\theta||_1 \text{ is } \boldsymbol{\ell}_1 \text{ norm of } \boldsymbol{\theta}$
- ▶ like the Euclidean or ℓ_2 norm $||\theta||$, it is a norm, *i.e.*, a measure of the size of the vector θ
- Euclidean norm is often written as $\|\theta\|_2$ to distinguish it from the ℓ_1 norm
- ▶ they are both members of the *p*-norm family, defined as

$$||\theta||_{p} = (|\theta_{1}|^{p} + \cdots + |\theta_{d}|^{p})^{1/p}$$

for $p\geq 1$

Sensitivity interpretation

- \blacktriangleright suppose the feature vector x changes to $ilde{x} = x + \delta$
- ▶ now we assume $|\delta_i| \leq \epsilon$, *i.e.*, each feature can change by $\pm \epsilon$
- ▶ how big can the change in prediction $|\theta^{\mathsf{T}}\tilde{x} \theta^{\mathsf{T}}x| = |\theta^{\mathsf{T}}\delta|$ be?
- ▶ the choice $\delta_i = \epsilon \operatorname{sign}(\theta_i)$ maximizes the change in prediction, *i.e.*,

•
$$\delta_i = \epsilon$$
 if $heta_i \geq 0$

$$\blacktriangleright \ \delta_i = -\epsilon \text{ if } \theta_i < 0$$

with this choice the change in prediction is

$$\epsilon |\theta^{\mathsf{T}} \operatorname{sign}(\theta)| = \epsilon (|\theta_1| + \dots + |\theta_d|) = \epsilon ||\theta||_1$$

▶ so $||\theta||_1$ is a measure of the worst-case change in prediction when x is perturbed entrywise by 1

Lasso regression

- \blacktriangleright use square loss $\ell(\hat{y},y)=(\hat{y}-y)^2$
- choosing θ to minimize $\mathcal{L}(\theta) + \lambda ||\theta||_2^2$ is called *ridge regression*
- choosing θ to minimize $\mathcal{L}(\theta) + \lambda ||\theta||_1$ is called *lasso regression*
- ▶ invented by (Stanford's) Rob Tibshirani, 1994
- widely used in advanced machine learning
- ▶ unlike ridge regression, there is no formula for the lasso parameter vector
- but we can efficiently compute it anyway (since it's convex)
- ▶ the lasso regression model has some interesting properties

Sparsifying regularizers

Sparse coefficient vector

- suppose θ is sparse, *i.e.*, many of its entries are zero
- ▶ prediction $\theta^{\mathsf{T}} x$ does not depend on features x_i for which $\theta_i = 0$
- ▶ this means we select *some* features to use (*i.e.*, those with $\theta_i \neq 0$)
- (possible) practical benefits of sparse θ :
 - can improve performance when many features are actually irrelevant
 - makes predictor simpler to interpret

Sparse coefficient vectors via ℓ_1 regularization

using ℓ_1 regularization leads to sparse coefficient vectors

 $r(\theta) = ||\theta||_1$ is called a *sparsifying regularizer*

rough explanation:

- ▶ for square penalty, once θ_i is small, θ_i^2 is very small
- so incentive for sum squares regularizer to make a coefficient smaller decreases once it is small
- \blacktriangleright for absolute penalty, incentive to make θ_i smaller keeps up all the way until it's zero

- ▶ artificially generated 50 data points, 200 features
- only a few features are relevant
- left hand plots use Tychonov, right hand use lasso

 \blacktriangleright sorted $| heta_i|$ at optimal λ

▶ lasso solution has only 35 non-zero components

 \blacktriangleright choose λ based on regularization path with test data

- \blacktriangleright keep features corresponding to largest components of θ and *retrain*
- plots above use most important 7 features identified by lasso

Even stronger sparsifiers

- ▶ $q(a) = |a|^{1/2}$
- ▶ called $\ell_{0.5}$ regularizer
- but you shouldn't use this term since

$$(|\theta_1|^{0.5} + \cdots + |\theta_d|^{0.5})^2$$

is not a norm (see VMLS)

- \blacktriangleright 'stronger' sparsifier than ℓ_1
- ▶ but not convex so computing θ is heuristic

 \triangleright ℓ_2 , ℓ_1 , and square root regularization

Nonnegative regularizer

Nonegative coefficients

- ▶ in some cases we know or require that $\theta_i \ge 0$
- \blacktriangleright this means that when x_i increases, so must our prediction
- ▶ we can think of this constraint as regularization with penalty function

$$q(a) = egin{cases} 0 & a \geq 0 \ \infty & a < 0 \end{cases}$$

- \blacktriangleright example: y is lifespan, x_i measures healthy behavior i
- with quadratic loss, called nonnegative least squares (NNLS)
- ▶ common heuristic for nonnegative least squares: use $(\theta^{ls})_+$ (works poorly)

• feature vector $x = (1, u, (u - 0.2)_+, \dots, (u - 0.8)_+)$

• nonnegative θ_i means predictor function is convex (curves up)

▶ NNLS loss 0.59, LS loss 0.30, heuristic loss 15.05

How to choose a regularizer

use out-of-sample or cross-validation to choose among regularizers

- for each candidate regularizer, choose λ to minimize test error (and maybe a little larger ...)
- use the regularizer that gives the best test error
- ▶ then make up a story about why you knew that would be the best