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Regularizers
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Regularizers

I motivation:

I large �i makes prediction �Tx sensitive to value of xi

I so we want � (or �2:d if x1 = 1) small

I regularizer r : Rd ! R measures the size of �

I usually regularizer is separable,

r(�) = q(�1) + � � �+ q(�d)

where q : R! R is a penalty function for the predictor coe�cients
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Sum squares regularizer

I sum squares regularizer uses square penalty qsqr(a) = a2

r(�) = k�k2 = �
2
1 + � � �+ �

2
d

I also called quadratic, Tychonov, or `2 regularizer
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Sensitivity interpretation

I suppose the feature vector x changes to ~x = x+ �

I � is the perturbation or change in x

I the change in prediction is j�T~x� �Txj = j�T�j

I how big can this be, if � is small, i.e., k�k � �?

I by Cauchy-Schwarz inequality, j�T�j � k�kk�k � �k�k

I and the choice � = �
k�k

� achieves this maximum change in prediction

I so k�k is a measure of the worst-case change in prediction when x is perturbed

by �, with k�k � 1
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`1 regularizer

I sum absolute or `1 regularizer uses absolute value penalty qabs(a) = jaj

r(�) = k�k1 = j�1j+ � � �+ j�dj

I k�k1 is `1 norm of �

I like the Euclidean or `2 norm k�k, it is a norm, i.e., a measure of the size of

the vector �

I Euclidean norm is often written as k�k2 to distinguish it from the `1 norm

I they are both members of the p-norm family, de�ned as

k�kp = (j�1j
p + � � �+ j�dj

p)
1=p

for p � 1
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Sensitivity interpretation

I suppose the feature vector x changes to ~x = x+ �

I now we assume j�ij � �, i.e., each feature can change by ��

I how big can the change in prediction j�T~x� �Txj = j�T�j be?

I the choice �i = � sign(�i) maximizes the change in prediction, i.e.,

I �i = � if �i � 0

I �i = �� if �i < 0

I with this choice the change in prediction is

�j�T sign(�)j = �(j�1j+ � � �+ j�dj) = �k�k1

I so k�k1 is a measure of the worst-case change in prediction when x is per-

turbed entrywise by 1
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Lasso regression

I use square loss `(ŷ; y) = (ŷ � y)2

I choosing � to minimize L(�) + �k�k22 is called ridge regression

I choosing � to minimize L(�) + �k�k1 is called lasso regression

I invented by (Stanford's) Rob Tibshirani, 1994

I widely used in advanced machine learning

I unlike ridge regression, there is no formula for the lasso parameter vector

I but we can e�ciently compute it anyway (since it's convex)

I the lasso regression model has some interesting properties
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Sparsifying regularizers
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Sparse coe�cient vector

I suppose � is sparse, i.e., many of its entries are zero

I prediction �Tx does not depend on features xi for which �i = 0

I this means we select some features to use (i.e., those with �i 6= 0)

I (possible) practical bene�ts of sparse �:

I can improve performance when many features are actually irrelevant

I makes predictor simpler to interpret
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Sparse coe�cient vectors via `1 regularization

using `1 regularization leads to sparse coe�cient vectors

r(�) = k�k1 is called a sparsifying regularizer

rough explanation:

I for square penalty, once �i is small, �2i is very small

I so incentive for sum squares regularizer to make a coe�cient smaller decreases

once it is small

I for absolute penalty, incentive to make �i smaller keeps up all the way until

it's zero
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Example
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I arti�cially generated 50 data points, 200 features

I only a few features are relevant

I left hand plots use Tychonov, right hand use lasso
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Example
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I sorted j�ij at optimal �

I lasso solution has only 35 non-zero components
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Example
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lasso

I choose � based on regularization path with test data

I keep features corresponding to largest components of � and retrain

I plots above use most important 7 features identi�ed by lasso
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Even stronger sparsi�ers

I q(a) = jaj1=2

I called `0:5 regularizer

I but you shouldn't use this term since�
j�1j

0:5 + � � �+ j�dj
0:5
�2

is not a norm (see VMLS)

I `stronger' sparsi�er than `1

I but not convex so computing � is heuristic
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Example
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I `2, `1, and square root regularization
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Nonnegative regularizer
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Nonegative coe�cients

I in some cases we know or require that �i � 0

I this means that when xi increases, so must our prediction

I we can think of this constraint as regularization with penalty function

q(a) =

(
0 a � 0

1 a < 0

I example: y is lifespan, xi measures healthy behavior i

I with quadratic loss, called nonnegative least squares (NNLS)

I common heuristic for nonnegative least squares: use (�ls)+ (works poorly)
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Example
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I feature vector x = (1; u; (u� 0:2)+; : : : ; (u� 0:8)+)

I nonnegative �i means predictor function is convex (curves up)

I NNLS loss 0:59, LS loss 0:30, heuristic loss 15:05
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How to choose a regularizer

use out-of-sample or cross-validation to choose among regularizers

I for each candidate regularizer, choose � to minimize test error

(and maybe a little larger . . . )

I use the regularizer that gives the best test error

I then make up a story about why you knew that would be the best
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