EE787 Autumn 2018 Jong-Han Kim

Optimization

Jong-Han Kim

EE787 Fundamentals of machine learning
Kyung Hee University

Optimization problems and algorithms

Optimization problem

minimize f(6)
» 6 € R is the variable or decision variable
» f:R? = Ris the objective function

» goal is to choose 6 to minimize f

» 6% is optimal means that for all 8, f(8) > f(6%)

v

f* = f(6) is the optimal value of the problem

optimization problems arise in many fields and applications, including machine
learning

v

Optimality condition

optimal stationary point
® non-optimal stationary point

» let’s assume that f is differentiable, i.e., partial derivatives

» if 6* is optimal, then Vf(6*) =0

» Vf(6) =0 is called the optimality condition for the problem

» there can be points that satisfy V f(6) = 0 but are not optimal
» we call points that satisfy V f(8) = 0 stationary points

» not all stationary points are optimal

Solving optimization problems

» in some cases, we can solve the problem analytically
» e.g. least squares: minimize f(8) = || X6 — y||?
» optimality condition is V£(6) = 2XT(X6 —y) =0
» this has (unique) solution 6* = (XTX) 1 xTy = X1y

(when columns of X are linearly independent)

» in other cases, we resort to an iterative algorithm that computes a sequence
6,62, ... with, hopefully, f(6%) = f* as k — oo

Iterative algorithms

» iterative algorithm computes a sequence 6,62, ...
b 6% is called the kth iterate
» 6% is called the starting point
» many iterative algorithms are descent methods, which means
F*Y) < F(6%), k=1,2,...
i.e., each iterate is better than the previous one

» this means that f(6*) converges, but not necessarily to f*

Stopping criterion

» in practice, we stop after a finite number K of steps

» typical stopping criterion: stop if ||V f(8%)|| < € or k = k™
» ¢ is a small positive number, the stopping tolerance

» k™ is the maximum number of iterations

> in words: we stop when 6* is almost a stationary point

» we hope that f(8%) is not too much bigger than f*

» or more realistically, that 8% is at least useful for our application

Non-heuristic and heuristic algorithms

> in some cases we know that f(8%) — f*, for any §*
» in words: we'll get to a solution if we keep iterating

» called non-heuristic

> other algorithms do not guarantee that f(6%) — f*
> we can hope that even if f(6%) A f*, 6% is still useful for our application

» called heuristic

Convex functions

Huber deadzone log Huber

o - N w & oo o o~

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2

convex convex non-convex

» a function f: R? — R is convex if for any 6, 6, and o with 0 <a<l,
f(ab + (1 —)f) < af(8) + (1 —a)f(6)

» roughly speaking, f has ‘upward curvature’

» ford =1, same as f"(6) > 0 for all &

Convex optimization

» optimization problem
minimize f(6)

is called convex if the objective function f is convex

» for convex optimization problem, V f(8) = 0 only for 8 optimal, i.e.,
all stationary points are optimal

» algorithms for convex optimization are non-heuristic

» i.e., we can solve convex optimization problems (exactly, in principle)

10

Convex ERM problems

» regularized empirical risk function f(8) = L£(8) + Ar(8), with A > 0,
1 ¢ i i
L) =~ p6'a' —y"), () =q6) + - +q(6a)
=1

» f is convex if loss penalty p and parameter penalty g functions are convex

» convex penalties: square, absolute, tilted absolute, Huber

» non-convex penalties: log Huber, squareroot

11

Gradient method

12

Gradient method

» assume f is differentiable

b at iteration 6%, create affine (Taylor) approximation of f valid near 6%
f(8:6%) = f(6*) + V£(6")" (6 - 6")

> f(8;6%) ~ f(8) for 6 near 6"

» choose 68511 to make F(6*11;6%) small, but with ||§** — 6%|| not too large

» choose 6*T to minimize f(6;6%) + Si:||6 — 6|

» h® > 0is a trust parameter or step length or learning rate

> solution is 851 = % — ¥V £(6*)

» roughly: take step in direction of negative gradient

13

Gradient method update

9k+1

» choose to as minimizer of

1

F(6*) + VF(6")T (6~ 6") + 5%

16— 6°1°

» rewrite as

1

k k ke BE kg2
S0 = 7) +REVEEO)" — IV (67l

F6*) +

» first and third terms don’t depend on 6
» middle term is minimized (made zero!) by choice

6 =0* — "V (")

14

How to choose step length

» if h* is too large, we can have f(8%') > f(6%)

b if h* is too small, we have f(8*T!) < f(6%) but progress is slow

» a simple scheme:
b if F(6%T1) > f(8F), set AL = pk /2, gR+1 — gk (a rejected step)
b if f(6%TL) < £(6%), set RFtL = 1.2n* (an accepted step)

» reduce step length by half if it's too long; increase it 20% otherwise

15

Gradient method summary

choose an initial * € R* and k' >0 (e.g., 8 =0, h* =1)

fork=1,2,...,k™>
1. compute V£(6%); quit if ||V £(6")|| is small enough
2. form tentative update 8" = 6% — R*V F(6%)
3. if f(8%") < f(6%), set @F 1 = gt"t, pFF = 1.2p*

4. else set h* := 0.5R* and go to step 2

16

Gradient method convergence

» (assuming some technical conditions hold) we have

IIVF(6%)|| = 0 as k — oo

» ie., the gradient method always finds a stationary point

» for convex problems

» gradient method is non-heuristic

» for any starting point 8%, f(6%) — f* as k — co

» for non-convex problems

» gradient method is heuristic

» we can (and often do) have f(6%) 4 f*

17

Example: Convex objective

02

v

v

3.5
3.0

25

£(8) = (™" (61 — 1) + p"**(62 — 1) + p"®(61 + 62 — 1))
f is convex

optimal point is 6* = (2/3,2/3), with f* =1/9

20

18

Example: Convex objective

&%) -+ ~ IV £ 16
10
10° 107
107" 1078
10 10 6
0 5 10 15 20 0 5 10
k k

» f(6%) is a decreasing function of k, (roughly) exponentially

> ||[Vf(6%)]] = 0as k — oo

20

19

Example: Non-convex objective

4 \ 4.0
2 35
\ '
PR S -——S IR F6,)°*° |
. X ‘ 25
4 VA S N S . o . WU
{7 J 20
-4
-4 -2 é) 2 4 L 0 20 30 40 50
1
> £(6) = 5(P"(6: +3) + p"(262 + 6) + p"(61 + 62 — 1))

» f is sum of log-Huber functions, so not convex

gradient algorithm converges, but limit depends on initial guess

v

20

Example: Non-convex objective

4
VNN
%
-)
2
0 b f >
é> e X N T—n
&
"
) \ /)
P | 74 ea/adh
a V5 aamd i AN
1/).
-4
-4 -2 0 2 4
61

21

Example: Non-convex objective

22

Gradient method for ERM

23

Gradient of empirical risk function

» empirical risk is sum of terms for each data point
Lo)= 15 ug vy = 1S aemat)
n i ! n i !

» convex if loss function £ is convex in first argument

» gradient is sum of terms for each data point
1 o7 oi iy i
0) = 0)=— 0
VL(8) = VL(6) n;e(z',y")z

where £'(g,y) is derivative of £ with respect to its first argument ¢

24

Evaluating gradient of empirical risk function

» compute n-vector §* = X6*
» compute n-vector z" , with entries z =7 (y“)

» compute d-vector VL(6%) = (1/n)X7T 2"

» first and third steps are matrix-vector multiplication, each costing 2nd flops
» second step costs order n flops (dominated by other two)

» total is 4nd flops

25

Validation

° train
test

loss

0 25 50 75 100 125 150 175 200

» can evaluate empirical risk on train and test while gradient is running

» optimization is only a surrogate for what we want
(i.e., a predictor that predicts well on unseen data)

» predictor is often good enough well before gradient descent has converged

26

