Jong-Han Kim

Boolean Classification

Jong-Han Kim

EE787 Fundamentals of machine learning Kyung Hee University

Boolean classification

Boolean classification

- supervised learning is called *boolean classification* when raw output variable
 v is a categorical that can take two possible values
- ▶ we denote these -1 and 1, and they often correspond to {FALSE, TRUE} or {NEGATIVE, POSITIVE}
- \blacktriangleright for a data record $u^i, v^i,$ the value $v^i \in \{-1, 1\}$ is called the *class* or *label*
- \blacktriangleright a *boolean classifier* predicts label \hat{v} given raw input u

Classification

▶ here $u \in \mathbf{R}^2$

 \blacktriangleright red points have $v^i=-1$, blue points have $v^i=1$

 \blacktriangleright we'd like a predictor that maps any $u\in\mathsf{R}^2$ into prediction $\hat{v}\in\{-1,1\}$

Example: Nearest neighbor classsifier

- igwedge given u, let $k = \mathrm{argmin}_k ||u-u^k||$, then predict $\hat{v} = v^k$
- ▶ red region is the set of u for which prediction is -1
- \blacktriangleright blue region is the set of u for which prediction is 1
- > zero training error (all points classified correctly), but perhaps overfit

Example: Least squares classifier

- \blacktriangleright embed x = (1, u) and y = v, apply least squares regression
- ▶ gives $\hat{y} = \theta_1 + \theta_2 u_1 + \theta_3 u_2$
- ▶ predict using $\hat{v} = \operatorname{sign}(\hat{y})$
- ▶ 11% of points misclassified at training

Confusion matrix

The two types of errors

- \blacktriangleright measure performance of a specific predictor on a set of n data records
- \blacktriangleright each data point i has $v^i \in \{-1,1\}$
- ullet and corresponding prediction $\hat{v}^i = g(v^i) \in \{-1,1\}$
- \blacktriangleright only four possible values for the data pair \hat{v}^i , v^i :
 - true positive if $\hat{v}^i = 1$ and $v^i = 1$
 - true negative if $\hat{v}^i = -1$ and $v^i = -1$
 - false negative or type II error if $\hat{v}^i = -1$ and $v^i = 1$
 - false positive or type I error if $\hat{v}^i = 1$ and $v^i = -1$

Confusion matrix

▶ for a predictor and a data set define the *confusion matrix*

$$C = \begin{bmatrix} \# \text{ true negatives } \# \text{ false negatives} \\ \# \text{ false positives } \# \text{ true positives} \end{bmatrix} = \begin{bmatrix} C_{\text{tn}} & C_{\text{fn}} \\ C_{\text{fp}} & C_{\text{tp}} \end{bmatrix}$$

(warning: some people use the transpose of C)

•
$$C_{tn} + C_{fn} + C_{fp} + C_{tp} = n$$
 (total number of examples)

- ▶ $N_n = C_{tn} + C_{fp}$ is number of negative examples
- $N_{\rm p} = C_{\rm fn} + C_{\rm tp}$ is number of positive examples
- diagonal entries give numbers of correct predictions
- ▶ off-diagonal entries give numbers of incorrect predictions of the two types

Some boolean classification measures

$$\blacktriangleright \text{ confusion matrix } \left[\begin{array}{cc} C_{tn} & C_{fn} \\ C_{fp} & C_{tp} \end{array} \right]$$

- ▶ the basic error measures:
 - False positive rate is $C_{\rm fp}/n$
 - false negative rate is C_{fn}/n
 - error rate is $(C_{fn} + C_{fp})/n$

error measures some people use:

- true positive rate or sensitivity or recall is C_{tp}/N_p
- false alarm rate is $C_{\rm fp}/N_{\rm n}$
- specificity or true negative rate is C_{tn}/N_n
- precision is $C_{tp}/(C_{tp}+C_{fp})$

Neyman-Pearson error

- Neyman-Pearson error over a data set is $\kappa C_{fn}/n + C_{fp}/n$
- ▶ a scalarization of our two objectives, false positive and false negative rates
- \blacktriangleright κ is how much more false negatives irritate us than false positives
- when $\kappa = 1$, the Neyman-Pearson error is the *error rate*

▶ we'll use the Neyman-Pearson error as our scalarized measure

ERM

Embedding

- \blacktriangleright we embed raw input and output records as $x=\phi(u)$ and $y=\psi(v)$
- $\blacktriangleright \phi$ is the feature map
- ψ is the identity map, $\psi(v) = v$
- un-embed by $\hat{v} = \operatorname{sign}(\hat{y})$
- ▶ equivalent to $\hat{v} = \operatorname*{argmin}_{v \in \{-1,1\}} |\hat{y} \psi(v)|$
- \blacktriangleright *i.e.*, choose the nearest boolean value to the (real) prediction \hat{y}

 \blacktriangleright given loss function $\ell(\hat{y}, y)$, *empirical risk* on a data set is

$$\mathcal{L} = rac{1}{n}\sum_{i=1}^n \ell(\hat{y}^i,y^i)$$

▶ for linear model $\hat{y} = \theta^{\mathsf{T}} x$, with $\theta \in \mathbf{R}^d$,

$$\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n \ell(heta^{ op}x^i,y^i)$$

ERM: choose θ to minimize $\mathcal{L}(\theta)$

▶ regularized ERM: choose θ to minimize $\mathcal{L}(\theta) + \lambda r(\theta)$, with $\lambda > 0$

Loss functions for boolean classification

- **b** to apply ERM, we need a loss function on embedded variables $\ell(\hat{y}, y)$
- ▶ y can only take values -1 or 1
- ▶ but $\hat{y} = \theta^{\mathsf{T}} x \in \mathsf{R}$ can be any real number
- ▶ to specify ℓ , we only need to give two functions (of a scalar \hat{y}):
 - \blacktriangleright $\ell(\hat{y},-1)$ is how much \hat{y} irritates us when y=-1
 - ▶ $\ell(\hat{y}, 1)$ is how much \hat{y} irritates us when y = 1
- ▶ we can take ℓ(ŷ, 1) = κℓ(-ŷ, -1), to reflect that false negatives irritate us a factor κ more than false positives

Neyman-Pearson loss

▶ Neyman-Pearson loss is

$$\begin{split} \bullet \ \ \ell^{\mathsf{NP}}(\hat{y}, -1) &= \begin{cases} 1 & \hat{y} \ge 0 \\ 0 & \hat{y} < 0 \end{cases} \\ \bullet \ \ \ell^{\mathsf{NP}}(\hat{y}, 1) &= \kappa l^{\mathsf{NP}}(\hat{y}, -1) = \begin{cases} \kappa & \hat{y} < 0 \\ 0 & \hat{y} \ge 0 \end{cases} \end{split}$$

▶ empirical Neyman-Pearson risk \mathcal{L}^{NP} is the Neyman-Pearson error

The problem with Neyman-Pearson loss

- empirical Neyman-Pearson risk L^{NP}(θ) is not differentiable, or even continuous (and certainly not convex)
- ▶ worse, its gradient $\nabla \mathcal{L}^{\text{NP}}(\theta)$ is either zero or undefined
- so an optimizer does not know how to improve the predictor

Idea of proxy loss

- we get better results using a proxy loss that
 - approximates, or at least captures the flavor of, the Neyman-Pearson loss
 - ▶ is more easily optimized (e.g., is convex or has nonzero derivative)

▶ we want a proxy loss function

- \blacktriangleright with $\ell(\hat{y},-1)$ small when $\hat{y} < 0$, and larger when $\hat{y} > 0$
- \blacktriangleright with $\ell(\hat{y},+1)$ small when $\hat{y}>0$, and larger when $\hat{y}<0$
- ▶ which has other nice characteristics, *e.g.*, differentiable or convex

Sigmoid loss

▶
$$\ell(\hat{y}, -1) = \frac{1}{1 + e^{-\hat{y}}}, \quad \ell(\hat{y}, 1) = \kappa \ell(-\hat{y}, -1) = \frac{\kappa}{1 + e^{\hat{y}}}$$

▶ differentiable approximation of Neyman-Pearson loss

but not convex

Logistic loss

►
$$\ell(\hat{y}, -1) = \log(1 + e^{\hat{y}}), \quad \ell(\hat{y}, 1) = \kappa \ell(-\hat{y}, -1) = \kappa \log(1 + e^{-\hat{y}})$$

▶ differentiable and convex approximation of Neyman-Pearson loss

Hinge loss

▶
$$\ell(\hat{y}, -1) = (1 + \hat{y})_+, \quad \ell(\hat{y}, 1) = \kappa \ell(-\hat{y}, -1) = \kappa (1 - \hat{y})_+$$

▶ nondifferentiable but convex approximation of Neyman-Pearson loss

Square loss

►
$$\ell(\hat{y}, -1) = (1 + \hat{y})^2$$
, $\ell(\hat{y}, 1) = \kappa \ell(-\hat{y}, -1) = \kappa (1 - \hat{y})^2$

▶ ERM is least squares problem

Hubristic loss

▶ define the *hubristic loss* (huber + logistic) as

$$\ell(\hat{y},-1) = egin{cases} 0 & \hat{y} < -1 \ (\hat{y}+1)^2 & -1 \leq \hat{y} \leq 0 \ 1+2\hat{y} & \hat{y} > 0 \end{cases}$$

 $\blacktriangleright \ \ell(\hat{y},1) = \kappa \ell(-\hat{y},-1)$

Boolean classifiers

Least squares classifier

▶ use empirical risk with square loss

$$\mathcal{L}(heta) = rac{1}{n} \left(\sum_{i:y^i = -1} (1 + \hat{y}^i)^2 + \kappa \sum_{i:y^i = 1} (1 - \hat{y}^i)^2
ight)$$

and your choice of regularizer

- ▶ with sum squares regularizer, this is *least squares classifier*
- we can minimize $\mathcal{L}(\theta) + \lambda r(\theta)$ using, e.g., QR factorization

Logistic regression

▶ use empirical risk with logistic loss

$$\mathcal{L}(\theta) = rac{1}{n} \left(\sum_{i:y^i = -1} \log(1 + e^{\hat{y}^i}) + \kappa \sum_{i:y^i = 1} \log(1 + e^{-\hat{y}^i}) \right)$$

and your choice of regularizer

- ▶ can minimize $\mathcal{L}(\theta) + \lambda r(\theta)$ using prox-gradient method
- ▶ we will find an actual minimizer if r is convex

Support vector machine

(usually abbreviated as SVM)

use empirical risk with hinge loss

$$\mathcal{L}(heta) = rac{1}{n} \left(\sum_{i: y^i = -1} (1 + \hat{y}^i)_+ \ + \ \kappa \sum_{i: y^i = 1} (1 - \hat{y}^i)_+
ight)$$

and sum squares regularizer

- $\mathcal{L}(\theta) + \lambda r(\theta)$ is convex
- it can be minimized by various methods (but not prox-gradient)

Support vector machine

- decision boundary is $\theta^{\mathsf{T}} x = 0$
- ▶ black lines show points where $\theta^T x = \pm 1$
- ▶ what is the training risk here?

ROC

Receiver operating characteristic

(always abbreviated as *ROC*, comes from WWII)

- explore trade-off of false negative versus false positive rates
- \blacktriangleright create classifier for many values of κ
- ▶ for each choice of κ , select hyper-parameter λ via validation on test set with Neyman-Pearson risk
- plot the test (and maybe train) false negative and false positive rates against each other
- ► called *receiver operating characteristic* (ROC) (when viewed upside down)

Example

- square loss, sum squares regularizer
- left hand plot shows training errors in blue, test errors in red

▶ right hand plot shows minimum-error classifier (*i.e.*, $\kappa = 1$)

Example

- \blacktriangleright left hand plot shows predictor when $\kappa=0.4$
- \blacktriangleright right hand plot shows predictor when $\kappa=4$