EE787 Autumn 2018

Boolean Classification

Jong-Han Kim

EE787 Fundamentals of machine learning
Kyung Hee University

Jong-Han Kim

Boolean classification

Boolean classification

» supervised learning is called boolean classification when raw output variable
v is a categorical that can take two possible values

» we denote these —1 and 1, and they often correspond to {FALSE, TRUE} or
{NEGATIVE, POSITIVE}

» for a data record u*,v*, the value v* € {—1,1} is called the class or label

» a boolean classifier predicts label ¥ given raw input u

Classification

z : o. 4
o ©
1 e %
(X]
.ll
’ . '.;.."- .
1 %e o o
.. [] .’ L]
2 o RN SR
o Ve Yapa N
3 o) @ o o
[J =
" °
-4 -3 2 -1 0 1 2 3 4
» here u € R?
» red points have v* = —1, blue points have v* =1
p

» we'd like a predictor that maps any u € R? into prediction ¥ € {1, 1}

Example: Nearest neighbor classsifier

4 °
3
°
®
z : :O
e ©
1 o %
o0
K
’ o V5.,
- °
' o2 . ' ®e
- . o 8 % .
B I . 4 ".‘o?\..‘ . . 8
-3 o » @ o ®
A .
" .
-4 -3 -2 -1 0 1 2 3 4

b given u, let k = argmin, ||u — u¥||, then predict ¥ = v*

» red region is the set of u for which prediction is —1
» blue region is the set of u for which prediction is 1

» zero training error (all points classified correctly), but perhaps overfit

Example: Least squares classifier

4
3
2

-1

-3

-4

» embed z = (1,u) and y = v, apply least squares regression
» gives _1'] =01 + 0su1 + Ozus
» predict using ¥ = sign(9)

» 11% of points misclassified at training

Confusion matrix

The two types of errors

» measure performance of a specific predictor on a set of n data records
> each data point 4 has v* € {—1,1}
» and corresponding prediction 9* = g(v*) € {—1,1}
» only four possible values for the data pair 9%, v*:
» true positive if * =1 and v* =1
» true negative if 3* = —1 and v* = —1

» false negative or type Il error if #* = —1 and v* =1

» false positive or type | error if 5* =1 and v* = —1

Confusion matrix

» for a predictor and a data set define the confusion matrix

C= " o
false positives # true positives Cip Cy

| # true negatives # false negatives} _ {Ct., Chn }
(warning: some people use the transpose of C)

» Cin + Ctn + Cip + Ctp = n (total number of examples)

» Nn = Cuw + Csp is number of negative examples

» Np = Cin + Ctp is number of positive examples

» diagonal entries give numbers of correct predictions

» off-diagonal entries give numbers of incorrect predictions of the two types

Some boolean classification measures

Ctn Cfn :|

» confusion matrix
{ Cfp Ctp

» the basic error measures:
» false positive rate is Cgp/n

» false negative rate is C, /1

» error rate is (Csn + Cpp) /1

» error measures some people use:
» true positive rate or sensitivity or recall is Cip/Np
» false alarm rateis Cg,/Nn
» specificity or true negative rate is Cin/Nn

» precision is Cp/(Ctp + Ctp)

Neyman-Pearson error

» Neyman-Pearson error over a data set is KCsn /1 + Cip /1
» a scalarization of our two objectives, false positive and false negative rates
» « is how much more false negatives irritate us than false positives

» when k = 1, the Neyman-Pearson error is the error rate

» we'll use the Neyman-Pearson error as our scalarized measure

11

ERM

12

Embedding

» we embed raw input and output records as ¢ = ¢(u) and y = 9(v)
» ¢ is the feature map

» 1 is the identity map, Y(v) = v

» un-embed by ¥ = sign(7)

b equivalent to ¥ = argmin |§ — ¥ (v)]
ve{—1,1}

» i.e., choose the nearest boolean value to the (real) prediction §

13

ERM

» given loss function £(9, y), empirical risk on a data set is
£=13" 03 v)
"
1=

» for linear model § = 8"z, with 6 € R?,

» ERM: choose 6 to minimize L£(6)

» regularized ERM: choose 6 to minimize £(8) + Ar(6), with A > 0

Loss functions for boolean classification

» to apply ERM, we need a loss function on embedded variables £(g, y)
» y can only take values —1 or 1

» but § =67z € R can be any real number

» to specify £, we only need to give two functions (of a scalar §):
» £(§,—1) is how much § irritates us when y = —1

» £(9,1) is how much § irritates us when y = 1

» we can take £(§,1) = x€(—97, —1), to reflect that false negatives irritate us a
factor k more than false positives

15

Neyman-Pearson loss

» Neyman-Pearson loss is

1 §>0
> ZNP(gi_l): :’ii
0 <0

. . Kk §<0
» NP(g,1) = kiNP(g, 1) =
(9,1) (9,-1) 0 g0

» empirical Neyman-Pearson risk £NF is the Neyman-Pearson error

3 3

INP(g, 1) NP(g,1)

The problem with Neyman-Pearson loss

» empirical Neyman-Pearson risk £LNF(8) is not differentiable, or even continu-
ous (and certainly not convex)

» worse, its gradient VLNF(9) is either zero or undefined

» so an optimizer does not know how to improve the predictor

17

Idea of proxy loss

» we get better results using a proxy loss that

» approximates, or at least captures the flavor of, the Neyman-Pearson loss

» is more easily optimized (e.g., is convex or has nonzero derivative)

» we want a proxy loss function
» with £(g, —1) small when § < 0, and larger when § > 0
» with £(g,+1) small when § > 0, and larger when § < 0

» which has other nice characteristics, e.g., differentiable or convex

18

Sigmoid loss

o 4(9,-1) ; 49,1)

N . 1 R . R K
> £(3,-1) = 11 s £Q3,1) = kl(—9,-1) = T1ed
» differentiable approximation of Neyman-Pearson loss

» but not convex

19

Logistic loss

2s £(9,-1) 2s £(3,1)

> 4(9,—1) =log(1+e%), £(§,1) = kt(—7,—1) = xlog(1+e™?)

» differentiable and convex approximation of Neyman-Pearson loss

20

Hinge loss

l(gi_l) e e(‘g’l)

> Z(gt _1) = (1 + 17)+. e(@: 1) = K/Z(_gy _1) = K/(l - g)+

» nondifferentiable but convex approximation of Neyman-Pearson loss

21

Square loss

30 30
25 l(g,—l) 25
20 20
15 15
1.0 10
05 05
00 00
3 2 1 0 1 2 3 3 2
g

> U9, -1)=(1+9)% £3,1)=K(-7,~1)

» ERM is least squares problem

22

Hubristic loss

o 49,1 s «9,1)

» define the hubristic loss (huber + logistic) as
0 §< -1
(g, -1)=q(@+1)> -1<9<0
1+25 §>0

23

Boolean classifiers

24

Least squares classifier

» use empirical risk with square loss

Le=_| > +9) +x)y (1-9)

dyt=—1 qryt=1
and your choice of regularizer
» with sum squares regularizer, this is least squares classifier

» we can minimize £(0) 4+ Ar(6) using, e.g., QR factorization

25

Logistic regression

use empirical risk with logistic loss

L(0) = o Z log(l—{—ei’i) + K Z log(1 +e)

qryt=—1 wyt=1
and your choice of regularizer
can minimize £(0) + Ar(8) using prox-gradient method

we will find an actual minimizer if r is convex

26

Support vector machine

(usually abbreviated as SVM)

» use empirical risk with hinge loss

c@ =2 S a+d) + 8> a-d)

qryt=—1 qryt=1
and sum squares regularizer
» L(6) + Ar(8) is convex

» it can be minimized by various methods (but not prox-gradient)

27

Support vector machine

25 hin% loss, £(9,1)

25 hinge loss, £(§, —1)

» decision boundary is 8Tz =0
» black lines show points where 8Tz = +1

» what is the training risk here?

28

ROC

29

Receiver operating characteristic

(always abbreviated as ROC, comes from WWII)

» explore trade-off of false negative versus false positive rates
» create classifier for many values of

» for each choice of k, select hyper-parameter A via validation on test set with
Neyman-Pearson risk

» plot the test (and maybe train) false negative and false positive rates against
each other

» called receiver operating characteristic (ROC) (when viewed upside down)

30

Example

Cip/n

0.6

0.5

04

0.2

0.1

0.0

v

0.0 0.1 0.3 0.4 0.5

0.2
Cin/n
square loss, sum squares regularizer

left hand plot shows training errors in blue, test errors in red

right hand plot shows minimum-error classifier (i.e., k = 1)

31

Example

» left hand plot shows predictor when k = 0.4

» right hand plot shows predictor when k = 4

32

