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Boolean classi�cation

I supervised learning is called boolean classi�cation when raw output variable

v is a categorical that can take two possible values

I we denote these �1 and 1, and they often correspond to ffalse;trueg or

fnegative; positiveg

I for a data record ui; vi, the value vi 2 f�1; 1g is called the class or label

I a boolean classi�er predicts label v̂ given raw input u
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Classi�cation
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I here u 2 R2

I red points have vi = �1, blue points have vi = 1

I we'd like a predictor that maps any u 2 R2 into prediction v̂ 2 f�1; 1g
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Example: Nearest neighbor classsi�er
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I given u, let k = argminkku� ukk, then predict v̂ = vk

I red region is the set of u for which prediction is �1

I blue region is the set of u for which prediction is 1

I zero training error (all points classi�ed correctly), but perhaps over�t
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Example: Least squares classi�er
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I embed x = (1; u) and y = v, apply least squares regression

I gives ŷ = �1 + �2u1 + �3u2

I predict using v̂ = sign(ŷ)

I 11% of points misclassi�ed at training
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Confusion matrix
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The two types of errors

I measure performance of a speci�c predictor on a set of n data records

I each data point i has vi 2 f�1; 1g

I and corresponding prediction v̂i = g(vi) 2 f�1; 1g

I only four possible values for the data pair v̂i, vi:

I true positive if v̂i = 1 and vi = 1

I true negative if v̂i = �1 and vi = �1

I false negative or type II error if v̂i = �1 and vi = 1

I false positive or type I error if v̂i = 1 and vi = �1
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Confusion matrix

I for a predictor and a data set de�ne the confusion matrix

C =

�
# true negatives # false negatives

# false positives # true positives

�
=

�
Ctn Cfn

Cfp Ctp

�

(warning: some people use the transpose of C)

I Ctn + Cfn + Cfp + Ctp = n (total number of examples)

I Nn = Ctn + Cfp is number of negative examples

I Np = Cfn + Ctp is number of positive examples

I diagonal entries give numbers of correct predictions

I o�-diagonal entries give numbers of incorrect predictions of the two types
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Some boolean classi�cation measures

I confusion matrix

�
Ctn Cfn

Cfp Ctp

�

I the basic error measures:

I false positive rate is Cfp=n

I false negative rate is Cfn=n

I error rate is (Cfn + Cfp)=n

I error measures some people use:

I true positive rate or sensitivity or recall is Ctp=Np

I false alarm rate is Cfp=Nn

I speci�city or true negative rate is Ctn=Nn

I precision is Ctp=(Ctp + Cfp)
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Neyman-Pearson error

I Neyman-Pearson error over a data set is �Cfn=n+ Cfp=n

I a scalarization of our two objectives, false positive and false negative rates

I � is how much more false negatives irritate us than false positives

I when � = 1, the Neyman-Pearson error is the error rate

I we'll use the Neyman-Pearson error as our scalarized measure
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ERM

12



Embedding

I we embed raw input and output records as x = �(u) and y =  (v)

I � is the feature map

I  is the identity map,  (v) = v

I un-embed by v̂ = sign(ŷ)

I equivalent to v̂ = argmin
v2f�1;1g

jŷ �  (v)j

I i.e., choose the nearest boolean value to the (real) prediction ŷ
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ERM

I given loss function `(ŷ; y), empirical risk on a data set is

L =
1

n

nX
i=1

`(ŷi; yi)

I for linear model ŷ = �Tx, with � 2 Rd,

L(�) =
1

n

nX
i=1

`(�Txi; yi)

I ERM: choose � to minimize L(�)

I regularized ERM: choose � to minimize L(�) + �r(�), with � > 0
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Loss functions for boolean classi�cation

I to apply ERM, we need a loss function on embedded variables `(ŷ; y)

I y can only take values �1 or 1

I but ŷ = �Tx 2 R can be any real number

I to specify `, we only need to give two functions (of a scalar ŷ):

I `(ŷ;�1) is how much ŷ irritates us when y = �1

I `(ŷ; 1) is how much ŷ irritates us when y = 1

I we can take `(ŷ; 1) = �`(�ŷ;�1), to re�ect that false negatives irritate us a

factor � more than false positives
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Neyman-Pearson loss

I Neyman-Pearson loss is

I `NP(ŷ;�1) =

�
1 ŷ � 0

0 ŷ < 0

I `NP(ŷ; 1) = �lNP(ŷ;�1) =

�
� ŷ < 0

0 ŷ � 0

I empirical Neyman-Pearson risk LNP is the Neyman-Pearson error
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The problem with Neyman-Pearson loss

I empirical Neyman-Pearson risk LNP(�) is not di�erentiable, or even continu-

ous (and certainly not convex)

I worse, its gradient rLNP(�) is either zero or unde�ned

I so an optimizer does not know how to improve the predictor
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Idea of proxy loss

I we get better results using a proxy loss that

I approximates, or at least captures the �avor of, the Neyman-Pearson loss

I is more easily optimized (e.g., is convex or has nonzero derivative)

I we want a proxy loss function

I with `(ŷ;�1) small when ŷ < 0, and larger when ŷ > 0

I with `(ŷ;+1) small when ŷ > 0, and larger when ŷ < 0

I which has other nice characteristics, e.g., di�erentiable or convex
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Sigmoid loss
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`(ŷ;�1)

ŷ
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I `(ŷ;�1) =
1

1 + e�ŷ
, `(ŷ; 1) = �`(�ŷ;�1) =

�

1 + eŷ

I di�erentiable approximation of Neyman-Pearson loss

I but not convex
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Logistic loss

3 2 1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0
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I `(ŷ;�1) = log(1 + eŷ), `(ŷ; 1) = �`(�ŷ;�1) = � log(1 + e�ŷ)

I di�erentiable and convex approximation of Neyman-Pearson loss
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Hinge loss
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I `(ŷ;�1) = (1 + ŷ)+, `(ŷ; 1) = �`(�ŷ;�1) = �(1� ŷ)+

I nondi�erentiable but convex approximation of Neyman-Pearson loss
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Square loss
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I `(ŷ;�1) = (1 + ŷ)2, `(ŷ; 1) = �`(�ŷ;�1) = �(1� ŷ)2

I ERM is least squares problem
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Hubristic loss
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I de�ne the hubristic loss (huber+ logistic) as

`(ŷ;�1) =

8><
>:
0 ŷ < �1

(ŷ + 1)2 �1 � ŷ � 0

1 + 2ŷ ŷ > 0

I `(ŷ; 1) = �`(�ŷ;�1)
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Boolean classi�ers
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Least squares classi�er

I use empirical risk with square loss

L(�) =
1

n

0
@ X

i:yi=�1

(1 + ŷi)2 + �
X
i:yi=1

(1� ŷi)2

1
A

and your choice of regularizer

I with sum squares regularizer, this is least squares classi�er

I we can minimize L(�) + �r(�) using, e.g., QR factorization
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Logistic regression

I use empirical risk with logistic loss

L(�) =
1

n

0
@ X

i:yi=�1

log(1 + eŷ
i

) + �
X
i:yi=1

log(1 + e�ŷi)

1
A

and your choice of regularizer

I can minimize L(�) + �r(�) using prox-gradient method

I we will �nd an actual minimizer if r is convex
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Support vector machine

(usually abbreviated as SVM)

I use empirical risk with hinge loss

L(�) =
1

n

0
@ X

i:yi=�1

(1 + ŷi)+ + �
X
i:yi=1

(1� ŷi)+

1
A

and sum squares regularizer

I L(�) + �r(�) is convex

I it can be minimized by various methods (but not prox-gradient)

27



Support vector machine
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I decision boundary is �Tx = 0

I black lines show points where �Tx = �1

I what is the training risk here?
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ROC

29



Receiver operating characteristic

(always abbreviated as ROC, comes from WWII)

I explore trade-o� of false negative versus false positive rates

I create classi�er for many values of �

I for each choice of �, select hyper-parameter � via validation on test set with

Neyman-Pearson risk

I plot the test (and maybe train) false negative and false positive rates against

each other

I called receiver operating characteristic (ROC) (when viewed upside down)
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Example
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I square loss, sum squares regularizer

I left hand plot shows training errors in blue, test errors in red

I right hand plot shows minimum-error classi�er (i.e., � = 1)
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Example
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I left hand plot shows predictor when � = 0:4

I right hand plot shows predictor when � = 4

32


