EE787 Autumn 2018

Jong-Han Kim

Multi-Class Classification

Jong-Han Kim

EE787 Fundamentals of machine learning Kyung Hee University

Multi-class classification

Multi-class classification

- ▶ classification is multi-class when raw output variable v is a categorical $v \in \mathcal{V} = \{v_1, \ldots, v_K\}$ with K > 2
- ▶ *v_i* are called *classes* or *labels*
- ▶ we'll also denote them as 1,..., K
- examples:
 - ▶ $\mathcal{V} = \{$ YES, MAYBE, NO $\}$
 - ▶ $\mathcal{V} = \{$ Albania, Azerbaijan, ... $\}$
 - $\triangleright \mathcal{V} = \{\text{hindi, tamil, }\dots\}$
 - \triangleright \mathcal{V} = set of English words in some dictionary
 - \triangleright $\mathcal{V} =$ set of m! possible orders of m horses in a race
- \blacktriangleright a *classifier* predicts label \hat{v} given raw input u
- called a K-class classifier

Confusion matrix

Confusion matrix

- \blacktriangleright measure performance of a specific predictor on a data set with n records
- \blacktriangleright for each data record i, there are K^2 possible values of (\hat{v}^i, v^i)
- ▶ *K* × *K* confusion matrix is defined by

$$C_{ij}=\#$$
 records with $\hat{v}=v_i$ and $v=v_j$

- entries in C add up to n
- ▶ column sums of C give number of records in each class in the data set
- \triangleright C_{ii} is the number of times we predict v_i correctly
- ▶ C_{ij} for $i \neq j$ is the number of times we mistook v_j for v_i
- there are K(K-1) different types of errors we can make
- ▶ there are K(K-1) different *error rates*, C_{ij}/n , $i \neq j$

Neyman-Pearson error

- ▶ $E_j = \sum_{i \neq j} C_{ij}$ is number of times we mistook v_j for another class
- ▶ E_j/n is the error rate of mistaking v_j
- ▶ we will scalarize these K error rates using a weighted sum
- the Neyman-Pearson error is

$$\sum_{j=1}^K \kappa_j E_j = \sum_{i
eq j} \kappa_j C_{ij}$$

where κ is a weight vector with nonnegative entries

- \triangleright κ_j is how much we care about mistaking v_j
- ▶ for $\kappa_j = 1$ for all *i*, Neyman-Pearson error is the *error rate*

Embedding

Embedding v

- ▶ we embed raw output $v \in V$ into \mathbb{R}^m as $y = \psi(v) \in \mathbb{R}^m$ (*cf.* boolean classification, where we embed v into \mathbb{R})
- ▶ we can describe ψ by the K vectors $\psi_1 = \psi(v_1), \ldots, \psi_K = \psi(v_K)$ (*i.e.*, just say what vector in \mathbb{R}^m each $v \in \mathcal{V}$ maps to)

 \blacktriangleright we call the vector ψ_i the *representative* of v_i

 \blacktriangleright we call the set $\{\psi_1, \ldots, \psi_K\}$ the *constellation*

examples:

- ▶ TRUE \mapsto 1, False \mapsto -1
- ▶ YES \mapsto 1, MAYBE \mapsto 0 NO \mapsto -1
- ▶ YES \mapsto (1,0), MAYBE \mapsto (0,0), NO \mapsto (0,1)
- ▶ APPLE \mapsto (1,0,0), orange \mapsto (0,1,0), banana \mapsto (0,0,1)
- (Horse 3, Horse 1, Horse 2) \mapsto (3, 1, 2)
- word2vec (maps 1M words to vectors in R³⁰⁰)

One-hot embedding

▶ a simple generic embedding of K classes into \mathbf{R}^{K}

$$\blacktriangleright \ \psi(v_i) = \psi_i = e_i$$

- ▶ variation (embedding K classes into \mathbf{R}^{K-1}):
 - \blacktriangleright choose one of the classes as the *default*, and map it to $0 \in \mathbf{R}^{K-1}$
 - \blacktriangleright map the others to the unit vectors $e_1,\ldots,e_{K-1}\in \mathbf{R}^{K-1}$

Nearest neighbor un-embedding

- ▶ given prediction $\hat{y} \in \mathbf{R}^m$, we *un-embed* to get \hat{v}
- \blacktriangleright we denote our un-emdedding using the symbol $\psi^{\dagger}: \mathbf{R}^m
 ightarrow \mathcal{V}$
- \blacktriangleright we *define* the un-embedding function ψ^{\dagger} as

$$\psi^{\dagger}(\hat{y}) = rgmin_{v \in \mathcal{V}} \|\hat{y} - \psi(v)\|$$

(we can break ties any way we like)

- ▶ *i.e.*, we choose the raw value associated with the nearest representative
- called nearest neighbor un-embedding

Un-embedding boolean

$$\blacktriangleright$$
 embed TRUE \mapsto $1=\psi_1$ and FALSE \mapsto $-1=\psi_2$

▶ un-embed via

$$\psi^{\dagger}(\hat{y}) = egin{cases} ext{TRUE} & \hat{y} \geq 0 \ ext{False} & \hat{y} < 0 \end{cases}$$

Un-embedding yes, maybe, no

▶ embed yes \mapsto (1,0), maybe \mapsto (0,0), no \mapsto (0,1)

▶ un-embed via

$$\psi^{\dagger}(\hat{y}) = egin{cases} ext{YES} & \hat{y}_1 > 1/2, \; \hat{y}_1 > \hat{y}_2 \ ext{MAYBE} & \hat{y}_1 < 1/2, \; \hat{y}_2 < 1/2 \ ext{NO} & \hat{y}_2 > 1/2, \; \hat{y}_1 < \hat{y}_2 \end{cases}$$

(can choose any value on boundaries)

Un-embedding one-hot

- \blacktriangleright one-hot embedding: $\psi_i = e_i, \ i = 1, \dots, K$
- \blacktriangleright un-embed via $\psi^{\dagger}(y) = \mathrm{argmin}_i \, ||y e_i||_2 = \mathrm{argmax}_i \, y_i$
- ▶ intuition:
 - > you can subtract one from one component of a vector
 - to get the smallest norm
 - best choice is the largest entry of the vector

Voronoi diagram

- ▶ ψ^{\dagger} partitions R^m into the K regions $\{y \mid \psi^{\dagger}(y) = v_i\}$, for i = 1, ..., K
- regions are *polyhedra*
- ▶ called Voronoi diagram
- \blacktriangleright boundaries between regions are perpendicular bisectors between pairs of representatives ψ_i, ψ_j

Margins

Margins and decision boundaries

- ullet given prediction $\hat{y}\in \mathsf{R}^m$, we un-embed via $\hat{v}=\psi^\dagger(\hat{y})$
- $ightarrow \psi^{\dagger}(\hat{y}) = v_{j}$ when \hat{y} is closer to ψ_{j} than the other representatives, *i.e.*,

$$||\hat{y} - \psi_j|| < ||\hat{y} - \psi_i||$$
 for $i
eq j$

• define the *negative margin* function M_{ij} by

$$egin{aligned} M_{ij}(\hat{y}) &= ig(\|\hat{y} - \psi_j\|^2 - \|\hat{y} - \psi_i\|^2 ig) / ig(2 \|\psi_i - \psi_j\| ig) \ &= rac{2(\psi_i - \psi_j)^\mathsf{T} \hat{y} + \|\psi_j\|^2 - \|\psi_i\|^2}{2 \|\psi_i - \psi_j\|} \end{aligned}$$

 \blacktriangleright so $\psi^{\dagger}(\hat{y}) = v_{j}$ when $M_{ij}(\hat{y}) < 0$ for all i
eq j

Margins and decision boundaries

linear equation

 $M_{ij}(\hat{y})=0$

defines a hyperplane called the perpendicular bisector between ψ_i and ψ_j

- \blacktriangleright it is the *decision boundary* between ψ_i and ψ_j
- \blacktriangleright \hat{y} is the correct prediction, when $v=v_j$, if

 $\max_{i\neq j}M_{ij}(\hat{y})<0$

Margins and decision boundaries

$$\blacktriangleright$$
 boolean: $\psi_1=-1$ and $\psi_2=1$ and

$$M_{21}(\hat{y}) = \hat{y} \qquad M_{12}(\hat{y}) = -\hat{y}$$

 \blacktriangleright one-hot: $\psi_j = e_j$ for all j, so

$$M_{ij} = rac{y_i - y_j}{\sqrt{2}}$$

Margins

Vector ERM

Vector prediction

- \blacktriangleright after embedding raw data u and v we have data pair (x, y)
- ▶ the target y is a vector (which takes only the values ψ_1, \ldots, ψ_K)
- \blacktriangleright predictor is a function $g: \mathbf{R}^d
 ightarrow \mathbf{R}^m$
- \blacktriangleright our final (raw) prediction is $\hat{v}=\psi^{\dagger}(\hat{y})$

Vector linear predictor

- vector linear predictor has form $\hat{y} = g(x) = \theta^{\mathsf{T}} x$
- \blacktriangleright same form as when y is a scalar, but here θ is a $d \times m$ parameter matrix
- $ightarrow heta_{23}$ is how much x_2 affects \hat{y}_3
- \blacktriangleright reduces to the usual parameter vector when m=1 (*i.e.*, y is scalar)

Vector ERM

$$lacksim$$
 linear model $\hat{y}= heta^{ op}x$, $heta\in\mathsf{R}^{d imes m}$

• choose parameter matrix θ to minimize $\mathcal{L}(\theta) + \lambda r(\theta)$

• $\mathcal{L}(\theta)$ is the empirical risk

$$\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n \ell(\hat{y}^i,y^i) = rac{1}{n}\sum_{i=1}^n \ell(heta^{ op}x^i,y^i)$$

with loss function $\ell: {\sf R}^m imes {\sf R}^m o {\sf R}$ (*i.e.*, ℓ takes two arguments, each in ${\sf R}^m$)

- \blacktriangleright $\lambda \geq$ 0 is regularization parameter
- \blacktriangleright $r(\theta)$ is the regularizer

Derivative of the empirical risk

▶ loss
$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(\theta^{\top} x^{i}, y^{i})$$

we'd like to apply the gradient method

• $D\mathcal{L}(\theta)$ is the derivative of \mathcal{L} with respect to θ (a matrix)

we have

$$(D\mathcal{L}(\theta))_{ij} = \frac{\partial \mathcal{L}(\theta)}{\partial \theta_{ij}}$$

▶ then the first-order Taylor approximation is

$$\mathcal{L}(\theta + \delta \theta) \approx \mathcal{L}(\theta) + \operatorname{trace}(D\mathcal{L}(\theta)^{\mathsf{T}} \delta \theta)$$

we have

$$D\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n x^iig(
abla_1 \ell(heta^{ op} x^i, y^i)ig)^{ op}$$

where ∇_1 means the gradient with respect to the first argument

Matrix regularizers

Matrix regularizers

- ▶ general penalty regularizer: $r(heta) = \sum_{i=1}^d \sum_{j=1}^m q(heta_{ij})$
- \blacktriangleright sum square regularizer: $r(heta) = \| heta\|_F^2 = \sum_{i=1}^d \sum_{j=1}^m heta_{ij}^2$
- ▶ the *Frobenius norm* of a matrix heta is $\left(\sum_{i,j} heta_{ij}^2\right)^{1/2}$
- ▶ sum absolute or ℓ_1 regularizer: $r(heta) = || heta||_1 = \sum_{i=1}^d \sum_{j=1}^m | heta_{ij}|$

Multi-class loss functions

Multi-class loss functions

- \blacktriangleright $\ell(\hat{y},y)$ is how much prediction \hat{y} bothers us when observed value is y
- \blacktriangleright but the only possible values of y are ψ_1,\ldots,ψ_K
- \blacktriangleright so we can simply give the K functions of \hat{y}

$$\ell(\hat{y},\psi_j), \quad j=1,\ldots,K$$

 \blacktriangleright $\ell(\hat{y},\psi_j)$ is how much we dislike predicting \hat{y} when $y=\psi_j$

Neyman-Pearson loss

▶ Neyman-Pearson loss is

$$\ell^{\mathsf{NP}}(\hat{y},\psi_j) = egin{cases} 0 & ext{if } \max_{i
eq j} M_{ij} < 0 \ \kappa_j & ext{otherwise} \end{cases}$$

- ▶ Neyman-Pearson risk $\mathcal{L}^{\mathsf{NP}}(\theta)$ is the Neyman-Pearson error
- ▶ but $\nabla \mathcal{L}^{\mathsf{NP}}(\theta)$ is either zero or undefined
- ▶ so there's no gradient to tell us which way to change θ to reduce $\mathcal{L}(\theta)$

Proxy loss

- we will use a proxy loss that
 - approximates, or at least captures the flavor of, the Neyman-Pearson loss
 - ▶ is more easily optimized (e.g., is convex or has nonzero derivative)

- ▶ we want a proxy loss function
 - \blacktriangleright with $\ell(\hat{y},\psi_j)$ small whenever $M_{ij}<$ 0 for i
 eq j
 - and not small otherwise
 - ▶ which has other nice characteristics, *e.g.*, differentiable or convex

Multi-class hinge loss

▶ hinge loss is

$$\ell(\hat{y},\psi_j)=\kappa_j \max_{i
eq j}(1+M_{ij}(\hat{y}))_+$$

- $\blacktriangleright~\ell(\hat{y},\psi_j)$ is zero when the correct prediction is made, with a margin at least one
- convex but not differentiable
- ▶ for boolean embedding with $\psi_1 = -1$, $\psi_2 = 1$, reduces to

$$\ell(\hat{y},-1) = \kappa_1(1+\hat{y})_+, \qquad \ell(\hat{y},1) = \kappa_2(1-\hat{y})_+$$

usual hinge loss when $\kappa_1=1$

Multi-class hinge loss

Multi-class logistic loss

▶ logistic loss is $\ell(\hat{y},\psi_j) = \kappa_j \log\left(\sum_{i=1}^K \exp(M_{ij}(\hat{y}))
ight)$

- ▶ recall that $M_{jj} = 0$
- convex and differentiable
- ▶ for boolean embedding with $\psi_1 = -1$, $\psi_2 = 1$, reduces to

$$\ell(\hat{y},-1) = \kappa_1 \log(1+e^{\hat{y}}), \qquad \ell(\hat{y},1) = \kappa_2 \log(1+e^{-\hat{y}})$$

usual logistic loss when $\kappa_1=1$

Multi-class logistic loss

 \hat{y}_2

Soft-max function

 \blacktriangleright the function $f: {\bf R}^n \rightarrow {\bf R}$

$$f(x) = \log \sum_{i=1}^n \exp(x_i)$$

is called the *log-sum-exp* function

▶ it is a convex differentiable approximation to the max function

▶ we have

$$\max\{x_1,\ldots,x_n\}\leq f(x)\leq \max\{x_1,\ldots,x_n\}+\log(n)$$

Example: Iris

Example: Iris

- ▶ famous example dataset by Fisher, 1936
- ▶ measurements of 150 plants, 50 from each of 3 species
- ▶ iris setosa, iris versicolor, iris virginica
- ▶ four measurements: sepal length, sepal width, petal length, petal width

Example: Iris

38

Classification with two features

- using only sepal_length and sepal_width
- ▶ one-hot embedding, multi-class logistic loss

• confusion matrix
$$C = \begin{bmatrix} 50 & 0 & 0 \\ 0 & 38 & 13 \\ 0 & 12 & 37 \end{bmatrix}$$

Classification with two features

- ▶ let θ_i be the *i*th column of θ
- ▶ plot shows $\theta_i^{\mathsf{T}} \phi(u)$ as function of u
- ▶ one-hot embedding of v, so un-embedding is $\hat{v} = \arg \max_i \theta_i^{\mathsf{T}} x$

8.0

Example: Iris confusion matrix

- \blacktriangleright we train using multi-class logistic loss, with $\kappa_i =$ for all i
- ▶ for this example, train using all the data
- ▶ resulting confusion matrix is

$$C = \left[\begin{array}{rrrr} 50 & 0 & 0 \\ 0 & 49 & 1 \\ 0 & 1 & 49 \end{array} \right]$$