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Multi-class classification

» classification is multi-class when raw output variable v is a categorical v €
V ={v1,..., vk} with K > 2

» v; are called classes or labels

» we'll also denote them as 1,..., K

» examples:
» V = {YES, MAYBE, NO}
» V = {ALBANIA, AZERBALJAN, ...}
» V = {HINDI, TAMIL, ...}
» V = set of English words in some dictionary

» V = set of m! possible orders of m horses in a race
» a classifier predicts label 9 given raw input u

» called a K-class classifier
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Confusion matrix

» measure performance of a specific predictor on a data set with n records
» for each data record 1, there are K2 possible values of (3¢, v*)
» K x K confusion matrix is defined by

Ci; = # records with ¥ = v; and v = v;

» entries in C add up to n

» column sums of C give number of records in each class in the data set
» Ci; is the number of times we predict v; correctly

» C;j for ¢ # j is the number of times we mistook v; for v;

» there are K(K — 1) different types of errors we can make

» there are K(K — 1) different error rates, Cij/n, 1 # J



Neyman-Pearson error

» E; = Ei;ﬁj Ci; is number of times we mistook v; for another class
» E;/n is the error rate of mistaking v;
» we will scalarize these K error rates using a weighted sum
» the Neyman-Pearson error is
K
Z Kk B; = Z k;Cij
j=1 it
where k is a weight vector with nonnegative entries
» «; is how much we care about mistaking v;

» for k; = 1 for all 2, Neyman-Pearson error is the error rate
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Embedding v

» we embed raw output v € V into R™ as y = ¢(v) € R™
(cf. boolean classification, where we embed v into R)

» we can describe ¥ by the K vectors ¥1 = ¥(v1),...,¥Yx = ¥ (vk)
(i.e., just say what vector in R™ each v € V maps to)

» we call the vector ; the representative of v;

» we call the set {91,...,¥x} the constellation

» examples:

» TRUE — 1, FALSE — —1

YES — 1, MAYBE — 0 NO — —1

ves — (1,0), mayBe — (0,0), No — (0,1)

APPLE — (1,0,0), orRANGE — (0,1,0), BANANA — (0,0,1)

(Horse 3, Horse 1, Horse 2) — (3,1,2)

vVvyYyyvyy

word2vec (maps 1M words to vectors in R300)



One-hot embedding

b a simple generic embedding of K classes into R¥

> Y(v) =P =ey

» variation (embedding K classes into R¥71):

» choose one of the classes as the default, and map it to 0 € RK-1

» map the others to the unit vectors e1,...,ex_1 € RE~!



Nearest neighbor un-embedding

» given prediction § € R™, we un-embed to get ¥
» we denote our un-emdedding using the symbol %' : R™ — V
» we define the un-embedding function ¢ as
$'(9) = argmin [|§ — 9 ()|
vEV
(we can break ties any way we like)
» i.e., we choose the raw value associated with the nearest representative

» called nearest neighbor un-embedding
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Un-embedding boolean

» embed TRUE — 1 = %1 and FALSE — —1 = 9>

» un-embed via

. TRUE ¢ >0
¥'(9) = { 5
FALSE ¢ <0
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Un-embedding yes, maybe, no

» embed YES — (1,0), MAYBE — (0,0), NO — (0, 1)
» un-embed via

YES 91 >1/2, 91 > 92
Y1(9) = { MAYBE 91 < 1/2, §2 < 1/2
NO 92> 1/2, i1 < J2

(can choose any value on boundaries)
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Un-embedding one-hot

» one-hot embedding: ¢; =e;, 0 =1,..., K
» un-embed via ¥(y) = argmin, ||y — e:||. = argmax, y;
» intuition:

» you can subtract one from one component of a vector

» to get the smallest norm

» best choice is the largest entry of the vector
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Voronoi diagram
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» o7 partitions R™ into the K regions {y | ¥T(y) = v}, fori=1,..., K
» regions are polyhedra
» called Voronoi diagram

» boundaries between regions are perpendicular bisectors between pairs of rep-
resentatives ¥, 1;
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Margins
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Margins and decision boundaries

> given prediction § € R™, we un-embed via 9 = %1(%)

> ¢T(1}) = v; when § is closer to 1; than the other representatives, i.e.,
1§ — %51l < 1§ — oal| for 2 5

» define the negative margin function M;; by

Mi;(9) = (19 — 511° — 119 — all”) / (2l%: — %;511)
_ 29— 9) "G+ lgsl® — N1l
2||4i — o5l

» so Y1 (§) = v; when M;(§) < 0foralli#j

16



Margins and decision boundaries

» linear equation
Mi;(g) =0

defines a hyperplane called the perpendicular bisector between v; and 9;
» it is the decision boundary between %; and v;
» ¢ is the correct prediction, when v = vj, if

max M;;(§) <0
1£]
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Margins and decision boundaries

» boolean: ¥ = —1 and ¢ =1 and

Mo(§) =9  Mia(9) = -9

» one-hot: 9; = e; for all 7, so

My = Y Y

V2
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margins M21 and Ma;
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Vector ERM
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Vector prediction

» after embedding raw data u and v we have data pair (z,y)
» the target vy is a vector (which takes only the values 91,...,¥k)
» predictor is a function g : R* — R™

» our final (raw) prediction is & = 1(g)
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Vector linear predictor

» vector linear predictor has form § = g(z) = 6"z

» same form as when y is a scalar, but here 6 is a d x m parameter matrix
» 023 is how much z, affects §s

» reduces to the usual parameter vector when m =1 (i.e., y is scalar)
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Vector ERM

» linear model § =67z, € R#*™
» choose parameter matrix 8 to minimize £(8) + Ar(6)
» L(6) is the empirical risk
L) =15 ug vy = 1S e o)
n ’ n i~ '

with loss function £ : R™ x R™ — R (i.e., £ takes two arguments, each in

R™)
» X > 0 is regularization parameter

» 7(8) is the regularizer
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Derivative of the empirical risk

loss £(6) = 257 2(8"z%, y*)
we'd like to apply the gradient method
DL(8) is the derivative of £ with respect to 6 (a matrix)

we have 5
L(6
(£®),, = 22
ij

then the first-order Taylor approximation is

L(6 + 86) ~ L(6) + trace(DL(6) ' 86)

we have
n

L) = 2 3o (Vat(6"e )

where Vi means the gradient with respect to the first argument
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Matrix regularizers
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Matrix regularizers

» general penalty regularizer: r(8) = Ez L ZJ . 4(6:5)

» sum square regularizer: r(8) = ||9||% = Zz Dy
1/2
» the Frobenius norm of a matrix 8 is (Z” 9%)

» sum absolute or £; regularizer: 7(8) = ||6]l: = Y30, >, 164
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Multi-class loss functions
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Multi-class loss functions

» £(7,y) is how much prediction § bothers us when observed value is y
» but the only possible values of y are 91, ..., ¥k
» so we can simply give the K functions of ¢

€9,95), 1=1,...,K

» £(3,v;) is how much we dislike predicting § when y = 1;
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Neyman-Pearson loss

» Neyman-Pearson loss is

0 if maxsz; My <0
O (g,95) = { b e
K; otherwise

» Neyman-Pearson risk £LN7(8) is the Neyman-Pearson error

» but VLNP(8) is either zero or undefined

» so there's no gradient to tell us which way to change 68 to reduce £(6)
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Proxy loss

» we will use a proxy loss that

» approximates, or at least captures the flavor of, the Neyman-Pearson loss

» is more easily optimized (e.g., is convex or has nonzero derivative)

» we want a proxy loss function
» with £(7, ;) small whenever M;; < 0 for < # j
» and not small otherwise

» which has other nice characteristics, e.g., differentiable or convex
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Multi-class hinge loss

» hinge loss is
£(3,%5) = K; T;?}((l + Mi;(9))+

» £(3,v;) is zero when the correct prediction is made, with a margin at least
one

» convex but not differentiable
» for boolean embedding with 91 = —1, ¥ = 1, reduces to
£9,-1)=r1(1+9)+,  £3,1) =r2(1—9)+

usual hinge loss when k1 =1
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Multi-class hinge loss

3

loss £(7, 1)
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Multi-class logistic loss

» logistic loss is

£(§,95) = K5 log (Z exp(Mij(g))>

i=1
» recall that M;; =0
» convex and differentiable
» for boolean embedding with 91 = —1, 92 = 1, reduces to
£(9, —1) = k1 log(1 + €Y), £(9,1) = k2 log(1 + e~ ?)

usual logistic loss when k1 =1
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Multi-class logistic loss

3

loss £(7, 1)
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Soft-max function

» the function f : R - R
f(z) =log > exp(z:)
=1

is called the log-sum-exp function
» it is a convex differentiable approximation to the max function
» we have

max{z1,...,zn} < f(z) < max{zi,...,z,} + log(n)
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Example: Iris
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Example: Iris

» famous example dataset by Fisher, 1936
» measurements of 150 plants, 50 from each of 3 species
» iris setosa, iris versicolor, iris virginica

» four measurements: sepal length, sepal width, petal length, petal width
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Example:

sepal length

sepal width

petal length

petal width
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Classification with two features

45
4.0
35
3.0
25

20

» using only sepal_length and sepal_width

» one-hot embedding, multi-class logistic loss

50 O 0
» confusion matrix C= | 0 38 13
0 12 37
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Classification with two features

» let 6; be the 7th column of 6
» plot shows 8] ¢(u) as function of u

» one-hot embedding of v, so un-embedding is ¥ = arg max; 6] «
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Example: Iris confusion matrix

» we train using multi-class logistic loss, with k; = for all z
» for this example, train using all the data

» resulting confusion matrix is

C:[O 49 1-|
[ |
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