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Multi-class classi�cation

I classi�cation is multi-class when raw output variable v is a categorical v 2
V = fv1; : : : ; vKg with K > 2

I vi are called classes or labels

I we'll also denote them as 1; : : : ;K

I examples:

I V = {yes, maybe, no}

I V = {albania, azerbaijan, . . . }

I V = {hindi, tamil, . . . }

I V = set of English words in some dictionary

I V = set of m! possible orders of m horses in a race

I a classi�er predicts label v̂ given raw input u

I called a K-class classi�er
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Confusion matrix
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Confusion matrix

I measure performance of a speci�c predictor on a data set with n records

I for each data record i, there are K2 possible values of (v̂i; vi)

I K �K confusion matrix is de�ned by

Cij = # records with v̂ = vi and v = vj

I entries in C add up to n

I column sums of C give number of records in each class in the data set

I Cii is the number of times we predict vi correctly

I Cij for i 6= j is the number of times we mistook vj for vi

I there are K(K � 1) di�erent types of errors we can make

I there are K(K � 1) di�erent error rates, Cij=n, i 6= j
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Neyman-Pearson error

I Ej =
P

i6=j
Cij is number of times we mistook vj for another class

I Ej=n is the error rate of mistaking vj

I we will scalarize these K error rates using a weighted sum

I the Neyman-Pearson error is

KX
j=1

�jEj =
X
i 6=j

�jCij

where � is a weight vector with nonnegative entries

I �j is how much we care about mistaking vj

I for �j = 1 for all i, Neyman-Pearson error is the error rate
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Embedding
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Embedding v

I we embed raw output v 2 V into Rm as y =  (v) 2 Rm
(cf. boolean classi�cation, where we embed v into R)

I we can describe  by the K vectors  1 =  (v1); : : : ;  K =  (vK)

(i.e., just say what vector in Rm each v 2 V maps to)

I we call the vector  i the representative of vi

I we call the set f 1; : : : ;  Kg the constellation

I examples:

I true 7! 1, false 7! �1

I yes 7! 1, maybe 7! 0 no 7! �1

I yes 7! (1; 0), maybe 7! (0; 0), no 7! (0; 1)

I apple 7! (1; 0; 0), orange 7! (0; 1; 0), banana 7! (0; 0; 1)

I (Horse 3, Horse 1, Horse 2) 7! (3; 1; 2)

I word2vec (maps 1M words to vectors in R300)
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One-hot embedding

I a simple generic embedding of K classes into RK

I  (vi) =  i = ei

I variation (embedding K classes into RK�1):

I choose one of the classes as the default, and map it to 0 2 RK�1

I map the others to the unit vectors e1; : : : ; eK�1 2 R
K�1
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Nearest neighbor un-embedding

I given prediction ŷ 2 Rm, we un-embed to get v̂

I we denote our un-emdedding using the symbol  y : Rm ! V

I we de�ne the un-embedding function  y as

 y(ŷ) = argmin
v2V

kŷ �  (v)k

(we can break ties any way we like)

I i.e., we choose the raw value associated with the nearest representative

I called nearest neighbor un-embedding
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Un-embedding boolean

I embed true 7! 1 =  1 and false 7! �1 =  2

I un-embed via

 y(ŷ) =

(
true ŷ � 0

false ŷ < 0
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Un-embedding yes, maybe, no
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I embed yes 7! (1; 0), maybe 7! (0; 0), no 7! (0; 1)

I un-embed via

 y(ŷ) =

8><
>:
yes ŷ1 > 1=2; ŷ1 > ŷ2

maybe ŷ1 < 1=2; ŷ2 < 1=2

no ŷ2 > 1=2; ŷ1 < ŷ2

(can choose any value on boundaries)
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Un-embedding one-hot

I one-hot embedding:  i = ei, i = 1; : : : ;K

I un-embed via  y(y) = argmini ky � eik2 = argmaxi yi

I intuition:

I you can subtract one from one component of a vector

I to get the smallest norm

I best choice is the largest entry of the vector
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Voronoi diagram
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I  y partitions Rm into the K regions fy j  y(y) = vig, for i = 1; : : : ;K

I regions are polyhedra

I called Voronoi diagram

I boundaries between regions are perpendicular bisectors between pairs of rep-

resentatives  i;  j
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Margins
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Margins and decision boundaries

I given prediction ŷ 2 Rm, we un-embed via v̂ =  y(ŷ)

I  y(ŷ) = vj when ŷ is closer to  j than the other representatives, i.e.,

kŷ �  jk < kŷ �  ik for i 6= j

I de�ne the negative margin function Mij by

Mij(ŷ) =
�
kŷ �  jk2 � kŷ �  ik2

�
=
�
2k i �  jk

�
=

2( i �  j)Tŷ + k jk2 � k ik2
2k i �  jk

I so  y(ŷ) = vj when Mij(ŷ) < 0 for all i 6= j
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Margins and decision boundaries

I linear equation

Mij(ŷ) = 0

de�nes a hyperplane called the perpendicular bisector between  i and  j

I it is the decision boundary between  i and  j

I ŷ is the correct prediction, when v = vj , if

max
i6=j

Mij(ŷ) < 0
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Margins and decision boundaries

I boolean:  1 = �1 and  2 = 1 and

M21(ŷ) = ŷ M12(ŷ) = �ŷ

I one-hot:  j = ej for all j, so

Mij =
yi � yjp

2
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Margins
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Vector ERM
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Vector prediction

I after embedding raw data u and v we have data pair (x; y)

I the target y is a vector (which takes only the values  1; : : : ;  K)

I predictor is a function g : Rd ! R
m

I our �nal (raw) prediction is v̂ =  y(ŷ)
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Vector linear predictor

I vector linear predictor has form ŷ = g(x) = �Tx

I same form as when y is a scalar, but here � is a d�m parameter matrix

I �23 is how much x2 a�ects ŷ3

I reduces to the usual parameter vector when m = 1 (i.e., y is scalar)
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Vector ERM

I linear model ŷ = �Tx, � 2 Rd�m

I choose parameter matrix � to minimize L(�) + �r(�)

I L(�) is the empirical risk

L(�) = 1

n

nX
i=1

`(ŷi; yi) =
1

n

nX
i=1

`(�Txi; yi)

with loss function ` : Rm � R
m ! R (i.e., ` takes two arguments, each in

R
m)

I � � 0 is regularization parameter

I r(�) is the regularizer
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Derivative of the empirical risk

I loss L(�) = 1

n

Pn

i=1
`(�Txi; yi)

I we'd like to apply the gradient method

I DL(�) is the derivative of L with respect to � (a matrix)

I we have �
DL(�)

�
ij
=
@L(�)
@�ij

I then the �rst-order Taylor approximation is

L(� + ��) � L(�) + trace(DL(�)T��)

I we have

DL(�) = 1

n

nX
i=1

xi
�
r1`(�

Txi; yi)
�T

where r1 means the gradient with respect to the �rst argument

24



Matrix regularizers
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Matrix regularizers

I general penalty regularizer: r(�) =
Pd

i=1

Pm

j=1
q(�ij)

I sum square regularizer: r(�) = k�k2F =
Pd

i=1

Pm

j=1
�2ij

I the Frobenius norm of a matrix � is
�P

i;j
�2ij

�1=2
I sum absolute or `1 regularizer: r(�) = k�k1 =

Pd

i=1

Pm

j=1
j�ij j
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Multi-class loss functions
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Multi-class loss functions

I `(ŷ; y) is how much prediction ŷ bothers us when observed value is y

I but the only possible values of y are  1; : : : ;  K

I so we can simply give the K functions of ŷ

`(ŷ;  j); j = 1; : : : ;K

I `(ŷ;  j) is how much we dislike predicting ŷ when y =  j
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Neyman-Pearson loss

I Neyman-Pearson loss is

`NP(ŷ;  j) =

(
0 if maxi 6=jMij < 0

�j otherwise

I Neyman-Pearson risk LNP(�) is the Neyman-Pearson error

I but rLNP(�) is either zero or unde�ned

I so there's no gradient to tell us which way to change � to reduce L(�)
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Proxy loss

I we will use a proxy loss that

I approximates, or at least captures the �avor of, the Neyman-Pearson loss

I is more easily optimized (e.g., is convex or has nonzero derivative)

I we want a proxy loss function

I with `(ŷ;  j) small whenever Mij < 0 for i 6= j

I and not small otherwise

I which has other nice characteristics, e.g., di�erentiable or convex
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Multi-class hinge loss

I hinge loss is

`(ŷ;  j) = �j max
i6=j

(1 +Mij(ŷ))+

I `(ŷ;  j) is zero when the correct prediction is made, with a margin at least

one

I convex but not di�erentiable

I for boolean embedding with  1 = �1,  2 = 1, reduces to

`(ŷ;�1) = �1(1 + ŷ)+; `(ŷ; 1) = �2(1� ŷ)+
usual hinge loss when �1 = 1
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Multi-class hinge loss
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Multi-class logistic loss

I logistic loss is

`(ŷ;  j) = �j log

 
KX
i=1

exp(Mij(ŷ))

!

I recall that Mjj = 0

I convex and di�erentiable

I for boolean embedding with  1 = �1,  2 = 1, reduces to

`(ŷ;�1) = �1 log(1 + eŷ); `(ŷ; 1) = �2 log(1 + e�ŷ)

usual logistic loss when �1 = 1
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Multi-class logistic loss
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Soft-max function

I the function f : Rn ! R

f(x) = log

nX
i=1

exp(xi)

is called the log-sum-exp function

I it is a convex di�erentiable approximation to the max function

I we have

maxfx1; : : : ; xng � f(x) � maxfx1; : : : ; xng+ log(n)
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Example: Iris
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Example: Iris

I famous example dataset by Fisher, 1936

I measurements of 150 plants, 50 from each of 3 species

I iris setosa, iris versicolor, iris virginica

I four measurements: sepal length, sepal width, petal length, petal width
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Example: Iris
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Classi�cation with two features
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I using only sepal_length and sepal_width

I one-hot embedding, multi-class logistic loss

I confusion matrix C =

2
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0 38 13

0 12 37
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Classi�cation with two features
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I let �i be the ith column of �

I plot shows �Ti �(u) as function of u

I one-hot embedding of v, so un-embedding is v̂ = argmaxi �
T
i x
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Example: Iris confusion matrix

I we train using multi-class logistic loss, with �i = for all i

I for this example, train using all the data

I resulting confusion matrix is

C =

2
4 50 0 0

0 49 1

0 1 49

3
5
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