EE787 Autumn 2018 Jong-Han Kim

Neural Networks

Jong-Han Kim

EE787 Fundamentals of machine learning
Kyung Hee University



Features

» neural networks can be thought of as a way to form features that works
directly from the data (as opposed to hand-engineered features)

» the resulting features are often useful for multiple regression/classification
tasks

» they often require a lot of data



Features

» so far we have considered predictors which depend linearly on 6
7=g(z)=6"c
called a linear model
» if we believe v and u are not related linearly, we add features, e.g.,

z=¢(u) = (l,u,uz,ue’,...,ud_l)

» this gives a better fit, i.e., reduces the training loss
» we do not get a better fit using linear features, e.g.,

T = ¢(u) = (1, w1, ua, w1 + u2)



Features

» a useful class of features consists of a nonlinear function A : R — R composed
with a linear function

d(u) = h(wr + waur + - - + War1%a)

» h must be nonlinear; if h is linear, then this does not improve the fit
» common choices are h(z) = (z)+ or h(z) = log(1 + %)
» coefficients wy, ..., wq41 are called weights

» one possibility: add features by randomly choosing weights



Neurons

» a neuron is a feature map of the form

o(u) = h(wi + waur + - - - + War1uq)

» the function h is called the activation function

» common choices of activation function:

» sigmoid: hA(u) =1/(1+e™ %)

» tanh: h(u) = tanh(u) = &=

el fe— U

» hinge or relu: h(u) = max(u,0)

» any nonlinear function can be used



Composing features

» we can compose features, e.g.,

ug = ¢1(u1, u2)
Uy = P2(us, us, us)
U0 = ¢3(‘u6, ’M7)
u11 = Pa(us, ug)
» predictor is § = 61 + 2u11 + Ozuio
» the composition defines a graph

» each node corresponds to a feature variable

» left-most nodes, called input nodes,
correspond to raw data records

Y

@\

® @
&



Neural networks

» feature maps

@\9

ug = ¢1(u1, u2)
Ug = ¢2(U3,‘U,4,’U.5)
U0 = ¢3(u6,u7)

U1 = ¢3(Us,u9)

Z

» in a linear model, choose 6 to minimize
regularized loss

» in a neural network

p each feature map is a neuron

® @
&

» we minimize over 8 and all weights w;;



Neural networks

» in a neural network, we optimize over both 8 and the weights w;;
» by optimizing w;; we are selecting features

» the resulting features are often useful for many problems

» called pre-trained neural networks

» pre-training chooses weights w;; by extensive training on a large amount of
data

» resulting neurons are used as features for ERM

» often applications only choose the output weights 8



Terminology

» such networks are sometimes called multi-layer per-
ceptrons or feedforward neural networks

» other types are recurrent neural networks and con-
volutional neural networks

» 7 is called the output node
» left-most nodes are called the input nodes

» other nodes are called hidden layers

® ® &

® @



Optimization

» use optimization to choose weights 8 and w;;
» gradient method (and variants) are widely used

» since the predictor is not linear in the weights w;;, convexity of the loss
function does not help

10



Computing gradients

» apply chain rule to differentiate composite functions
» called back propagation
» simpler alternative: automatic differentiation

» distinct from numerical differentiation, which computes approximate deriva-

) & T@ TR~ £(2)
f(e) w HETH )

tives via

» automatic differentiation

» implemented either symbolically or by operator overloading

» returns exact derivatives (when activation functions are differentiable)

11



Computing derivatives

import Base: *,+,exp

struct Var
X
dx

end

*(a::Var, b::Var) = Var(a.x*b.x, b.x*a.dx + a.x*b.dx)
*(a::Number, b::Var) = Var(axb.x, axb.dx)

*(a::Var, b::Number) = bx*a

+(a::Var, b::Var) = Var(a.x+b.x, a.dx + b.dx)
exp(a::Var) = Var(exp(a.x), exp(a.x)*a.dx)

f(a) = a*xexp(a~3 + 7#a) # define function f

x =2 # evaluate derivative at x=2
= Var(x,1)

dfdx = f(xvar).dx # returns derivative

B
<
o
R
[



Example: classification

> logistic loss I(4,y) = log(1 + e ¥9)
» 2 hidden layers s
» sigmoid activation h(u) =1/(1+e™%)

» weights w € R*? and 6 € R®

13



Example: classification

» the predictor is

uz = h(wy + wau1 + wauz)

ug = h(ws + wsu; + weuz)

us = h(wr + wsu1 + wouz)

ug = h(wio + wi1u1 + Wiau2)

ur = h(wiz + WiaUs + WisUs + WieUs + Wi7Ue)
ug = h(wis + Wious + Waola + W21uUs + Warls)

J =061+ 02ur + O3us

» we choose 6, w to minimize

n

1 i d 2 2
LS UG, y) + NBIP + sl

=1

14






Neurons

Ug

16



Neurons

o~
I

-3

U1

17



Predictor

o~
I

U1

18



Example: classification

» plots above show approximate convergence to a local minimum after 250
iterations

» can subsequently use only the important neurons, i.e., remove neurons for
which corresponding coefficients are small and solve again

19



