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Features

I neural networks can be thought of as a way to form features that works

directly from the data (as opposed to hand-engineered features)

I the resulting features are often useful for multiple regression/classi�cation

tasks

I they often require a lot of data
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Features

I so far we have considered predictors which depend linearly on �

ŷ = g(x) = �Tx

called a linear model

I if we believe v and u are not related linearly, we add features, e.g.,

x = �(u) = (1; u; u2; u3; : : : ; ud�1)

I this gives a better �t, i.e., reduces the training loss

I we do not get a better �t using linear features, e.g.,

x = �(u) = (1; u1; u2; u1 + u2)

3



Features

I a useful class of features consists of a nonlinear function h : R! R composed

with a linear function

�(u) = h(w1 + w2u1 + � � �+ wd+1ud)

I h must be nonlinear; if h is linear, then this does not improve the �t

I common choices are h(x) = (x)+ or h(x) = log(1 + ex)

I coe�cients w1; : : : ; wd+1 are called weights

I one possibility: add features by randomly choosing weights
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Neurons

I a neuron is a feature map of the form

�(u) = h(w1 + w2u1 + � � �+ wd+1ud)

I the function h is called the activation function

I common choices of activation function:

I sigmoid: h(u) = 1=(1 + e�u)

I tanh: h(u) = tanh(u) = eu�e�u

eu+e�u

I hinge or relu: h(u) = max(u; 0)

I any nonlinear function can be used

5



u7

u6

u5

u4

u3

u2

u1

u8

u9

u10

u11

ŷ

Composing features

I we can compose features, e.g.,

u8 = �1(u1; u2)

u9 = �2(u3; u4; u5)

u10 = �3(u6; u7)

u11 = �4(u8; u9)

I predictor is ŷ = �1 + �2u11 + �3u10

I the composition de�nes a graph

I each node corresponds to a feature variable

I left-most nodes, called input nodes,

correspond to raw data records
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Neural networks

I feature maps

u8 = �1(u1; u2)

u9 = �2(u3; u4; u5)

u10 = �3(u6; u7)

u11 = �3(u8; u9)

I in a linear model, choose � to minimize

regularized loss

I in a neural network

I each feature map is a neuron

I we minimize over � and all weights wij
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Neural networks

I in a neural network, we optimize over both � and the weights wij

I by optimizing wij we are selecting features

I the resulting features are often useful for many problems

I called pre-trained neural networks

I pre-training chooses weights wij by extensive training on a large amount of

data

I resulting neurons are used as features for ERM

I often applications only choose the output weights �
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Terminology

I such networks are sometimes called multi-layer per-

ceptrons or feedforward neural networks

I other types are recurrent neural networks and con-

volutional neural networks

I ŷ is called the output node

I left-most nodes are called the input nodes

I other nodes are called hidden layers
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Optimization

I use optimization to choose weights � and wij

I gradient method (and variants) are widely used

I since the predictor is not linear in the weights wij , convexity of the loss

function does not help

10



Computing gradients

I apply chain rule to di�erentiate composite functions

I called back propagation

I simpler alternative: automatic di�erentiation

I distinct from numerical di�erentiation, which computes approximate deriva-

tives via

f 0(x) �
f(x+ h)� f(x)

h

I automatic di�erentiation

I implemented either symbolically or by operator overloading

I returns exact derivatives (when activation functions are di�erentiable)
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Computing derivatives

import Base: *,+,exp

struct Var

x

dx

end

*(a::Var, b::Var) = Var(a.x*b.x, b.x*a.dx + a.x*b.dx)

*(a::Number, b::Var) = Var(a*b.x, a*b.dx)

*(a::Var, b::Number) = b*a

+(a::Var, b::Var) = Var(a.x+b.x, a.dx + b.dx)

exp(a::Var) = Var(exp(a.x), exp(a.x)*a.dx)

f(a) = a*exp(a^3 + 7*a) # define function f

x = 2 # evaluate derivative at x=2

xvar = Var(x,1)

dfdx = f(xvar).dx # returns derivative
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Example: classi�cation

I logistic loss l(ŷ; y) = log(1 + e�yŷ)

I 2 hidden layers

I sigmoid activation h(u) = 1=(1 + e�x)

I weights w 2 R22 and � 2 R3
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Example: classi�cation

I the predictor is

u3 = h(w1 + w2u1 + w3u2)

u4 = h(w4 + w5u1 + w6u2)

u5 = h(w7 + w8u1 + w9u2)

u6 = h(w10 + w11u1 + w12u2)

u7 = h(w13 + w14u3 + w15u4 + w16u5 + w17u6)

u8 = h(w18 + w19u3 + w20u4 + w21u5 + w22u6)

ŷ = �1 + �2u7 + �3u8

I we choose �; w to minimize

1

n

nX
i=1

l(ŷi; yi) + �k�k2 + �kwk2
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Neurons
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Neurons
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Predictor

3 2 1 0 1 2 3
3

2

1

0

1

2

3

ŷ
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Example: classi�cation

I plots above show approximate convergence to a local minimum after 250

iterations

I can subsequently use only the important neurons, i.e., remove neurons for

which corresponding coe�cients are small and solve again
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