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Unsupervised learning

» in supervised learning we deal with pairs of records u, v
» goal is to predict v from u using a prediction model

» the output records v® ‘supervise’ the learning of the model

» in unsupervised learning, we deal with only records u

» goal is to build a data model of u, in order to

» reveal structure in u
» impute missing entries (fields) in u

» detect anomalies

» yes, the first goal is vague ...



Embedding

» as usual we embed raw data u into a feature vector z = ¢(u) € R?
» we then build a data model for the feature vectors

» we un-embed when needed, to go back to the raw vector u

» so we'll work with feature vectors from now on

» (embedded) data set has the form z,...,z™ € R¢



Data model

» a data model tells us what the vectors in some data set ‘look like’

can be expressed quantitatively by an implausibility function or loss function
£:R* >R

v

£(z) is how implausible z is as a data point

v

» {(z) small means z ‘'looks like' our data, or is ‘typical’

» {(z) large means z does not look like our data

» if our model is probabilistic, i.e., z comes from a density p(z), we can take
£(z) = —logp(z), the negative log density

» other names for £(z): surprise, perplexity, . ..

» { is often parametrized by a vector or matrix 6, and denoted £y(z)



A simple constant model
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» data model: z is near a fixed vector 6 € R*
» 6 € R% parametrizes the model
» some implausibility functions:

> Lo(z) = llz —6|I> =
> lo(z) =z -6l = Z?zl |z; — 85| (absolute loss)

j:l(wi — 6;)? (square loss)



K-means data model

[ . O
» data model: z is close to one of the k representatives 61, . ..,6; € R®

» quantitatively: for our data points z, the quantity

Lo(z) = m|n ||:B - 91||

i.e., the minimum distance squared to the representatives, is small

» d x k matrix @ = [0 - - - Ox] parametrizes the k-means data model



Imputing missing entries



Imputing missing entries

» suppose z has some entries missing, denoted 7 or NA or NalN
» K C{1,...,d} is the set of known entries

» we use our data model to guess or impute the missing entries
» we'll denote the imputed vector as Z

» &, =z, fort €K

» imputation example, with K = {1, 3}

12.1 12.1
S R I X
T —2.3 | —2.3
? 3.4
» we are imputing or guessing £2 = —1.5, £4 = 3.4

» the other entries we know: &1 = z1 = 12.1, &3 = 23 = —2.3



Imputation using a data model

» given partially specified vector z we minimize over the unknown entries:

minimize  £g(Z)
subjectto Z;==z;, 1€EK

» i.e., impute the unknown entries to minimize the implausibility, subject to the
given known entries
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Imputing with constant data model
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given z with some entries unknown

constant data model with implausibility function £e(z) = ||z — 6]|?

we minimize (&1 — 01)% + - -+ + (£4 — 04) subject to &; = z; for i € K
so &; =z; fori € K

for 1 ¢ K, we take Z; = 6;

i.e., for the unknown entries, guess the model parameter entries

vV vV vV VvV Vv v v

example has 8 = (0.79,1.11)
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Imputing with k-means data model

» given = with some entries unknown

» k-means data model with implausibility function
Lo(z) = mini=1, x|z — 6|2

» find nearest representative 8; to z, using only known entries
» ie., find j that minimizes )., (z: — (65):)?
» guess Z; = (6;); for t € K

» ie., for the unknown entries, guess the entries of the closest representative
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Supervised learning as special case of imputation

» suppose we wish to predict y € R based on z € R?
n 1 n

» we have some training data z!,...,z", %, ...,y

» define (d + 1)-vector & = (z,y)

M

» build data model for # using training data #',...,%

» to predict y given z, impute last entry of & = (z, ?)
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Validating imputation

we can validate a proposed data model (and imputation method):

» divide data into a training and a test set
» build data model on the training set
» mask some entries in the vectors in the test set (i.e., replace them with ?)

» impute these entries and evaluate the average error or loss of the imputed
values, e.g., the RMSE
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Fitting data models
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Generic fitting method

» given data z!,... 2"

bility function £¢(z)

(with no missing entries), and parametrized implausi-

» how do we choose the parameter 67

» average implausibility or empirical loss is
o) =13 )
= a2k
1=1
» choose 8 to minimize £(8), (possibly) subject to 8 € ©, the set of acceptable

parameters

» i.e., choose parameter 6 so the observed data is least implausible
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Fitting a constant model with sum squares loss

» sum squares implausibility function £s(z) = ||z — 6||?

» empirical loss is
I s
0) = = L—9)?
£60) = 3 2 el
1=

» minimizing over 6 yields

the mean of the data vectors
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Fitting a constant model with sum absolute loss

» sum absolute implausibility function £s(z) = ||z — 6||1

» empirical loss is
n
1 .
L(6) == -6
©)=5 2l -l

» minimizing over 6 yields
6 = median(z’, ..., z")

the elementwise median of the data vectors
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Fitting a k-means model

» implausibility function £e(z) = minj=1, .k ||z — 65|

» parameter is d X k matrix with columns 61, ..., 6

» empirical loss is
n

1 . i 2
£(0) =, > min ||z =]

=1
» this is the k-means objective function!

» we can use the k-means algorithm to (approximately) minimize £(6), i.e., fit
a k-means model
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K-means algorithm

» define the assignment or clustering vector ¢ € R™
> c; is the cluster that data vector z* is in (so ¢; € {1,...,k})

» to minimize
n

— 1 H A 12
£(0) =, D min |lz" =65

=1

we minimize = 3" [|z* — 6c,||* over both c and 61, .., 6%
> we can minimize over ¢ using c; = argmin, |zt — 65|
> we can minimize over 1, ...,60y using 6; as the average of {z’ | ¢; =4}
» k-means algorithm alternates between these two steps

» it is a heuristic for (approximately) minimizing £(6)
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K-means example

» 200 data points; reserve 40 for test
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K-means example

loss

0 1 2 3 4 5

iteration

» convergence after 4 iterations
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K-means example

+— training loss
30 “ testloss
—e— average rmse imputation error
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» fit k-mean data model for k =1,2,...,50

» validate by removing randomly either u; or us from each record in test set
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Revealing structure in data
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Structure from a data model

» a data model can reveal structure of the data
» can be used for other purposes, some of them vague

» a good k-means model suggests that data come from k different ‘modes’ or
‘regimes’ or ‘processes’
» examples:

» partition 5 sec mobile phone accelerometer data into different patterns
(walking, sitting, running, biking, etc.)

» partition customer purchase data into market segments

» partition articles into different topics, authors
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Features from a data model

» we can use a k-means data model to generate new features
» one-hot: map z to & = e;, ¢ = argmin; ||z — 6;||
> soft version: map z to # € R¥, (¢ > 0 is a hyper-parameter)

o lle—6il2/c2

&=
T e—llz=61l?/0® .. 4 e—llz—6kl?/0?’

i=1,...
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Missing entries in a data set

» we've so far assumed that there are no missing entries in the data set used
to build the data model

» let's see how to handle the case when entries are missing
» first, standardize data using known entries

» replace missing entries with zeros

» build data model

» use data model to impute missing entries

» now build new data model, and repeat
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Example: Missing entries in a data set

-3 °

» blue points known, purple points have missing z coordinate, green points
missing y coordinate, red points missing both
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Recommendation system

» features are movies; examples are customer ratings

» entries are either rating (say, between 1 and 5) or 7 if the customer did not
rate that movie

» imputed entries are our guess of what rating the customer would give, if they
rated that movie

» we can recommend movies to a customer for which the imputed entry is large
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