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Subspace data model

I data model: x is near to a linear combination of the vectors �1; : : : ; �r 2 R
d

I d� r matrix parameter � = [�1 � � � �r] parametrizes the model

I r < d is called the rank of the model

I �1; : : : ; �r are called the principal components or archetypes

I called principal component analysis (PCA) model or low rank model

I the implausibility or loss function is

`�(x) = min
a
kx� �ak2

i.e., the minimum distance squared to a linear combination of �1; : : : ; �r

I we can assume that � has orthonormal columns, i.e., �T � = I
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Example
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PCA loss function
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I set of all linear combinations of �1; : : : ; �r is called a subspace S of Rd

I PCA loss function mina kx� �ak2 is distance squared to the subspace S

I since we assume �T� = I, optimal a is a = �yx = �Tx, so

`�(x) = k(I � ��T )xk2 = kxk2 � k��Txk2 = kxk2 � k�Txk2

I if x is a linear combination of �1; : : : ; �r, `�(x) = 0
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PCA empirical loss

I given data set x1; : : : ; xn, form n� d data matrix

X =

2
64

(x1)T

...

(xn)T

3
75

I empirical PCA loss is

L(�) =
1

n

nX
i=1

(kxik2 � k�Txik2) = kXk2F � kX�k2F

where kBk2F =
P

i;j
B2

ij is the Frobenius norm squared of a matrix B
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Fitting a PCA model

I we choose � to minimize L(�) subject to �T� = I

I same as maximizing kX�k2F subject to �T� = I

I this can be done exactly (non-heuristically) by several algorithms

(singular value decomposition, eigenvalue decomposition)

I theta=pca_fit(X,r)

I complexity of simple methods is order nd2 �ops

I other methods are more e�cient when r � d

6



Imputing with subspace data model

I �nd coe�cients a to minimize
P

i2K
(xi � (�a)i)

2

I roughly speaking, �nd the closest linear combination of �1; : : : ; �r to x, con-

sidering only the known entries

I guess x̂i = (�a)i for i 62 K

I i.e., use the same linear combination of �1; : : : ; �r to guess the unknown

entries
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Approximate matrix factorization interpretation

I ai = �Txi minimizes kxi � �ak2

I write as A = X�, where A has rows aT
1 ; : : : ; a

T
n (using �y = �T since �T� = I)

I A is an n� r matrix

I ~xi = �ai = ��Txi is closest point to xi in subspace

I write as ~X = A�T, where ~X has rows ~xT
1 ; : : : ; ~x

T
n

I ~X is an n� d matrix; it is tall-wide product

I empirical loss is

L(�) = kX � ~Xk2F = kX �X��Tk2F = kX � A�Tk2F

I so PCA �nds the closest matrix to X that is a product of an n � r and an

r � n matrix
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PCA for embedding and dimension reduction

I the mapping a = �Tx gives compressed features

I x 2 Rd is the original feature vector

I a 2 Rr is the associated compressed feature vector

I since (usually) r � d, this is dimension reduction

I the mapping a = �Tx is a (linear) embedding from R
d into Rr

I the embedding is based on the data set

I roughly speaking, it preserves the distances between the original feature vec-
tors, to the extent possible, i.e., we have ka� ~ak � kx� ~xk for typical data
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Approximate isometry property

I a mapping F : Rp ! R
q is called an isometry if it preserves distances, i.e.,

kF (x)� F (~x)k = kx� ~xk for all x, ~x

I classic example: F (x) = Qx, where QTQ = I (so Q is square or tall)

I recall that `�(x) = kxk2 � k�Txk2 is the distance squared to the subspace S

I so if this is small, i.e., the data model is good, we have kxk � kak

I in other words, the embedding x 7! a = �Tx is an approximate isometry

I useful for plotting or visualization with r = 2 or 3
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Example: Census data
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I U.S. census data 2010

I x has dimension d = 186

I n = 33120 rows, one per zipcode

I use PCA with r = 2; plot shows reduced features
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Example: Census data
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I plot shows entries of �1 and �2

I three large positive entries of �1 are median ages of total pop., male pop.,

and female pop.

I largest entries of �2 are racial population counts
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Latent semantic indexing
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Features from text

I each record ui is a document

I d unique words in corpus of all documents

I embedding maps documents to d-vectors

I embed so that �(ui)j > 0 if word j is in document i
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Embedding

I for a document u, term frequency of word j is

fterm(u; j) =
number of occurrences of word j in u

the number of words in u

I for a set of documents, the document frequency of word j is

fdoc(j) =
the number of documents in which the word occurs

n

I TFIDF embedding

�(u)j = fterm(u; j) log(1=fdoc(j))
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Example: Distinguishing texts

I The Critique of Pure Reason by Immanuel Kant and The Problems of Philos-

ophy by Bertrand Russell

I 50 excerpts from each book

I each excerpt is approximately 3000 characters

I split into words, remove punctuation, capitalization

I d = 3566 unique words

I TFIDF embedding, standardize, PCA
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Example: 1000 characters of Kant

for these must be contemplated not as properties of things, but only as changes in

the subject, changes which may be di�erent in di�erent men. For, in such a case,

that which is originally a mere phenomenon, a rose, for example, is taken by the

empirical understanding for a thing in itself, though to every di�erent eye, in respect

of its colour, it may appear di�erent. On the contrary, the transcendental conception

of phenomena in space is a critical admonition, that, in general, nothing which is

intuited in space is a thing in itself, and that space is not a form which belongs

as a property to things; but that objects are quite unknown to us in themselves,

and what we call outward objects, are nothing else but mere representations of our

sensibility, whose form is space, but whose real correlate, the thing in itself, is not

known by means of these representations, nor ever can be, but respecting which, in

experience, no inquiry is ever made.
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Example: 1000 characters of Russell

intrinsic nature, and continues to exist when I am not looking, or is the table merely a

product of my imagination, a dream-table in a very prolonged dream? This question

is of the greatest importance. For if we cannot be sure of the independent existence

of objects, we cannot be sure of the independent existence of other people's bodies,

and therefore still less of other people's minds, since we have no grounds for believing

in their minds except such as are derived from observing their bodies. Thus if we

cannot be sure of the independent existence of objects, we shall be left alone in a

desert�it may be that the whole outer world is nothing but a dream, and that we

alone exist. This is an uncomfortable possibility; but although it cannot be strictly

proved to be false, there is not the slightest reason to suppose that it is true. In

this chapter we have to see why this is the case. Before we embark upon doubtful

matters, let us try to �nd some more or less �xed point from which
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Example: Distinguishing texts
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I X is 100� 2262

I russell in red, kant in blue
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Example: Distinguishing texts
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