
EE787, Autumn 2018 Jong-Han Kim

Homework 1

1. Nearest neighbor predictor. We have a collection of n observations, xi ∈ Rd, yi ∈ R,
i = 1, . . . , n. Based on these observations, the nearest neighbor predictor is defined as
gnn(x) = yk, where xk is a nearest neighbor of x among the data points. (We can break
ties arbitrarily. Recall that xk is a nearest neighbor of x means that ‖x−xk‖ ≤ ‖x−xi‖
for i = 1, . . . , n.)

(a) Write a Julia function y_hat = nn_predictor(x, X, y) that implements gnn,
given the argument x. The second and third arguments give the data on which
the predictor is based: X is an n × d matrix whose ith row is (xi)T , and y is an
n-vector with ith entry yi.

(b) Report the train and test RMSE of the predictor in part (a) on the data pro-
vided in nearest_neighbor_data.json, training on the first 1500 data points
and testing on the rest. Briefly interpret your results.

2. Soft nearest neighbor. In this exercise we examine an extension of the nearest neighbor
predictor that can occasionally perform better. For data set xi ∈ Rd, yi ∈ R, i =
1, . . . , n, the soft nearest neighbor predictor is defined as

gsnn(x) =

∑n
i=1 y

ie−‖x−x
i‖2/σ2∑n

i=1 e
−‖x−xi‖2/σ2 ,

where σ ≥ 0 is a parameter. Note that σ can be thought of as a distance; the function
e−‖x−x

i‖2/σ2
is near one when the distance between x and xi is much less than σ, and

it is very small when the distance is much more than σ.

(a) What does gsnn(x) converge to as σ → 0? (Explain briefly.)

(b) What does gsnn(x) converge to as σ →∞? (Explain briefly.)

(c) Implement the soft nearest neighbor predictor in Julia as

y_hat = snn_predictor(x,X,y,sigma).

(d) Using the data in nearest_neighbor_data.json, plot train and test RMSEs for
gsnn as a function of σ over the range [10−1, 101]. What value of σ would you
choose? How does the test RMSE of predictor compare to the nearest neighbor
predictor and the constant predictor?

3. Sequential outlier removal. Throughout this problem, you’ll use the data U, v, found in
fitting_outliers.json. Here, U ∈ Rn×1, so there is only one (nonconstant) feature.
This one feature is already (nearly) standardized, so you do not need to standardize
it. The data matrix X will have two columns, the constant feature one and the feature
given in U . Also, there is enough data that you do not need to use any regularization.

1



(a) Fit a least squares model to the dataset above and plot the data points and
straight-line fit. Describe what you observe.

(b) Sequential outlier removal. Find the data point with the largest loss and label
it as an outlier. Remove this point from your data set and fit the model again
to this new dataset (which has one fewer data point). Continue doing this until
your θ stops changing too much (say, the change between the components of the
previous θ and the current one is no more than .01).

Show a few of the intermediate fits and the final fit plotted against the data points.
Describe what you observe.

4. All-pairs interactions. In the following problem, we will use U, and v found in the data
file all_pairs_data.json. The data has U ∈ Rn×3. Throughout this problem, use a
50-50 train/test split.

(a) Fit a linear least-squares model directly to the data matrix, with the first feature
being a constant feature x1 = 1. Since we’ve given you enough data and the data
is approximately standardized, you do not have to worry about regularization or
standardization. Report the train and test RMSE of this predictor.

(b) Create an embedding which includes all of the interactions (products) between
every pair of distinct variables, along with a constant feature and the variables
themselves. For example, if u ∈ R2, then the embedding should be

φ(u) = (1, u1, u2, u1u2).

Report the train and test RMSE of this predictor. Compare it with the RMSEs
you got in (a).

2


