
EE787, Autumn 2018 Jong-Han Kim

Homework 2

1. Approximate inductance formula. The figure below shows a planar spiral inductor,
implemented in CMOS, for use in RF circuits.
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The inductor is characterized by four key parameters:

• n, the number of turns (which is a multiple of 1/4, but that needn’t concern us)

• w, the width of the wire

• d, the inner diameter

• D, the outer diameter

The inductance L of such an inductor is a complicated function of the parameters n,
w, d, and D. The inductance L can be found by solving Maxwell’s equations, which
takes considerable computer time, or by fabricating the inductor and measuring the
inductance. In this problem you will develop a simple approximate inductance model
of the form

L̂ = αnβ1wβ2dβ3Dβ4 ,

where α, β1, β2, β3, β4 ∈ R are constants that characterize the approximate model.
(since L is positive, we have α > 0, but the constants β2, . . . , β4 can be negative.) This
simple approximate model, if accurate enough, can be used for design of planar spiral
inductors. The file inductor data.json on the course web site contains data n, w,

d, D, L for 50 inductors. (The data is real, not that it would affect how you solve the
problem . . . ) For inductor i, we give parameters ni, wi, di, and Di (all in µm), and
also, the inductance Li (in nH) obtained from measurements. (The data are organized
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as vectors of length 50. Thus, for example, w13 gives the wire width of inductor 13.)
Your task, i.e., the problem, is to find α, β1, . . . , β4 so that

L̂i = αnβ1i w
β2
i d

β3
i D

β4
i ≈ Li for i = 1, . . . , 50.

Your solution must include a clear description of how you found your parameters, as
well as their actual numerical values. Note that we have not specified the criterion
that you use to judge the approximate model (i.e., the fit between L̂i and Li); we leave
that to your engineering judgment. But be sure to tell us what criterion you use. We
define the percentage error between L̂i and Li as

ei = 100|L̂i − Li|/Li.

Find the average percentage error for your model, i.e., (e1+ · · ·+e50)/50. (We are only
asking you to find the average percentage error for your model; we do not require that
your model minimize the average percentage error.) Hint: you might find it easier to
work with logL.

2. Fitting with rational functions. In this problem we consider a function f : R → R of
the form

f(x) =
a0 + a1x+ · · ·+ amx

m

1 + b1x+ · · ·+ bmxm
,

where a0, . . . , am, and b1, . . . , bm are parameters, with either am 6= 0 or bm 6= 0. Such a
function is called a rational function of degree m. We are given data points x1, . . . , xn ∈
R and y1, . . . , yn ∈ R, where yi ≈ f(xi).

The problem is to find a rational function of degree m that is consistent with this data.
In other words, you are to find a0, . . . , am, b1, . . . , bm, which satisfy f(xi) ≈ yi. Explain
how you will solve this problem, and then carry out your method for several different
m’s, maybe 3 to 10, on the problem data given in rational_fit_data.json. (This
contains the data size, n, with two vectors, x and y, that give the values x1, . . . , xn,
and y1, . . . , yn, respectively.)

Which m would you choose? Justify your answer by displaying your approximations
with the raw data on a single plot.

3. Regularized least squares and features. The following problem will use U, and v found
in prostate_cancer_data.json. For the problem below, use the first 70 data as the
training set, and the rest as the test set.

(a) Explain how to formulate the problem of fitting regularized least squares given
a matrix U and regularization parameter λ > 0, where the first feature is the
constant feature x1 = 1.

(b) Standardize all of the features and then fit a model to the data, adding only a
constant feature. Sweep your regularization parameter λ over the range [10−5, 105]
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and plot the corresponding training and test errors. Choose an appropriate value
for λ, i.e., the largest value that achieves approximately minimum test error. Give
the model, and the corresponding test error.

(c) If you look into the data matrix U , you’ll notice that the last two columns actually
take on only a few values. Embed both columns using a one-hot encoding, keeping
the rest of the values the same. Now do the same sweep you did in part (b), and
plot the corresponding training and testing errors. Compare the final test RMSE
of the one-hot encoding vs. the original encoding, with appropriately chosen λ
for each.

Hint. You can make use of the Julia file to_one_hot.jl, which contains the
function to_one_hot(u). This function takes as input an n-vector u whose entries
are one of k categories and embeds it using a one-hot embedding into Rn×k.

4. Limit behaviours of the regularized least squares solutions. In this problem we consider
the optimal solution of the Tykhonov regularized least squares solutions with a full
rank matrix X ∈ Rn×d.

θ∗ = argmin
θ
||Xθ − y||22 + λ||θ||22

=
(
XTX + λI

)−1
XTy

Suppose X is skinny and full rank, i.e., rank(A) = d < n. Then it is crystal clear that
θ∗ → 0 as λ → ∞, and θ∗ → (XTX)−1XTy as λ → 0, that is, θ∗ approaches to zero
if λ is extremely large, and θ∗ approaches to the unregularized least squares solution
when λ is tiny. No big deal.

Now consider the opposite case when X is fat and full rank, i.e., rank(A) = n < d.
The optimal θ∗ is zero for extremely large λ. The same thing. However an interesting
thing happens when λ approaches to zero. In this problem, we are going to look at
that. First note that XTX, which is the limit of (XTX+λI) as λ→ 0, is not invertible
in this case, hence the expression (XTX)−1XTy doesn’t make sense at all.

(a) Show that the following holds whenever the appearing matrix products and in-
verses make sense. It is called the Push-through identity.

A (I +BA)−1 = (I + AB)−1A

(b) Find the optimal θ∗ by applying the above to your optimal regularized least
squares solution, and taking the limit, λ→ 0. What is it?

(c) Show that your solution satisfies Xθ∗ = y.

(d) Show that ||θ∗||2 ≤ ||θ||2 for any θ ∈ Rd.

The solution you found achieves the minimum norm among the infinitely many solu-
tions satisfying Xθ = y, hence it is called the least norm solution.
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