
EE787, Autumn 2018 Jong-Han Kim

Homework 4

1. Tomography. In this problem we explore a simple version of a tomography problem.
We consider a square region, which we divide into an n × n array of square pixels, as
shown below.

x1

x2

xn

xn+1

x2n xn2

The pixels are indexed column first, by a single index i ranging from 1 to n2, as shown
above. We are interested in some physical property such as density (say) which varies
over the region. To simplify things, we’ll assume that the density is constant inside
each pixel, and we denote by xi the density in pixel i, i = 1, . . . , n2. Thus, x ∈ R

n2

is
a vector that describes the density across the rectangular array of pixels. The problem
is to estimate the vector of densities x, from a set of sensor measurements that we now
describe. Each sensor measurement is a line integral of the density over a line L. In
addition, each measurement is corrupted by a (small) noise term. In other words, the
sensor measurement for line L is given by

n2

∑

i=1

lixi + v,

where li is the length of the intersection of line L with pixel i (or zero if they don’t
intersect), and v is a (small) measurement noise. This is illustrated below for a problem
with n = 3.

1

x1

x2

x3

x4

x5

x6

x8

x9

l2

l3

l4

l5

l7

line L

In this example, we have l1 = l6 = l8 = l9 = 0, and your sensor measurement will be
something like

y = 0.4x2 + 1.3x3 + 0.9x4 + 0.9x5 + 0.4x7 + v

Now suppose we have N line integral measurements, associated with lines L1, . . . , LN .
From these measurements, we want to estimate the vector of densities x. The lines are
characterized by the intersection lengths

lij, i = 1, . . . , n2, j = 1, . . . , N,

where lij gives the length of the intersection of line Lj with pixel i. Then, the whole
set of measurements forms a vector y ∈ R

N whose elements are given by

yj =

n2

∑

i=1

lijxi + vj, j = 1, . . . , N.

And now the problem: you will reconstruct the pixel densities x from the line inte-
gral measurements y. The class webpage contains tomodata_fullysampled.json and
tomodata_undersampled.json, each of which contains the following variables:

• N, the number of measurements (N),

• n_pixels, the side length in pixels of the square region (n),

• y, a vector with the line integrals yj, j = 1, . . . , N ,

• lines_d, a vector containing the displacement dj , j = 1, . . . , N , (distance from
the center of the region in pixels lengths) of each line, and

• lines_theta, a vector containing the angles θj , j = 1, . . . , N , of each line.

2

We also provide the function line_pixel_length.jl on the webpage, which you do
need to use in order to solve the problem. This function computes the pixel inter-
section lengths for a given line. That is, given dj and θj (and the side length n),
line_pixel_length.jl returns a n × n matrix, whose i, jth element corresponds to
the intersection length for pixel i, j on the image. Use this information to find x, and
display it as an image (of n by n pixels). You may refer to TV_inpainting.ipynb

from the course webpage, which contains several utility functions that can be used to
display your reconstructed images.

(a) Use tomodata_fullysampled.json to reconstruct the pixel densities. Note that
he file contains the measurement data obtained from 5184 line integrals on a
60 × 60 image, therefore providing more measurement data than the unknown
variables. So you can simply do this job by setting up a problem like

minimizex ||Ax− y||22

where your feature matrix A can be constructed by using line_pixel_length.jl.

(b) Use tomodata_undersampled.json to reconstruct the pixel densities. Note that
he file contains the measurement data obtained from 1296 line integrals on a
60× 60 image, therefore providing way less measurement data than the unknown
variables. In order to solve this problem, try the following regularizer defined by
the 2-normed total variation (TV) function. You are welcome to use the Dx and
Dy provided in TV_inpainting.ipynb, to express the TV function.

TV2(X) =

m−1
∑

i=1

n−1
∑

j=1

(

|Xij −Xi+1,j|
2 + |Xij −Xi,j+1|

2
)

=

∥

∥

∥

∥

[

Dx

Dy

]

vec(X)

∥

∥

∥

∥

2

2

In other words, you will have to set up and solve the following. Let us simply
choose our weighting parameter as λ = 0.1, however you are strongly encouraged
to explore different weighting parameters.

minimizex ||Ax− y||22 + λ

∥

∥

∥

∥

[

Dx

Dy

]

x

∥

∥

∥

∥

2

2

(c) Repeat the above problem with the 1-normed total variation (TV) function.

TV1(X) =
m−1
∑

i=1

n−1
∑

j=1

(|Xij −Xi+1,j |+ |Xij −Xi,j+1|) =

∥

∥

∥

∥

[

Dx

Dy

]

vec(X)

∥

∥

∥

∥

1

In other words, you will have to set up and solve the following. Similarly, let
us simply choose our weighting parameter as λ = 0.1, however you are strongly
encouraged to explore different weighting parameters.

minimizex ||Ax− y||22 + λ

∥

∥

∥

∥

[

Dx

Dy

]

x

∥

∥

∥

∥

1

3

For problem (b) and (c), you may use Julia 0.6 version with the Convex.jl package and
ECOS solver.

Note: While irrelevant to your solution, this is actually a simple version of tomography,
best known for its application in medical imaging as the CAT scan. If an x-ray gets
attenuated at rate xi in pixel i (a little piece of a cross-section of your body), the j-th
measurement is

zj =
n2

∏

i=1

e−xilij ,

with the lij as before. Now define yj = − log zj, and we get

yj =

n2

∑

i=1

xilij .

4

